High Anthropogenic Organic Matter Inputs during a Festival Increase River Heterotrophy and Refractory Carbon Load
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32806906
PubMed Central
PMC7458420
DOI
10.1021/acs.est.0c02259
Knihovny.cz E-zdroje
- MeSH
- dovolená MeSH
- ekosystém MeSH
- heterotrofní procesy MeSH
- řeky * MeSH
- uhlík * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rakousko MeSH
- Názvy látek
- uhlík * MeSH
Streams and rivers metabolize dissolved organic matter (DOM). Although most DOM compounds originate from natural sources, recreational use of rivers increasingly introduces chemically distinct anthropogenic DOM. So far, the ecological impact of this DOM source is not well understood. Here, we show that a large music festival held adjacent to the Traisen River in Austria increased the river's dissolved organic carbon (DOC) concentration from 1.6 to 2.1 mg L-1 and stream ecosystem respiration from -3.2 to -4.5 mg L-1. The DOC increase was not detected by sensors continuously logging absorbance spectra, thereby challenging their applicability for monitoring. However, the fluorescence intensity doubled during the festival. Using parallel factor analysis, we were able to assign the increase in fluorescence intensity to the chemically stable UV-B filter phenylbenzimidazole sulfonic acid, indicating organic compounds in sunscreen and other personal care products as sources of elevated DOC. This observation was confirmed by liquid chromatography coupled with mass spectrometry. The elevated respiration is probably fueled by anthropogenic DOM contained in beer and/or urine. We conclude that intense recreational use of running waters transiently increases the anthropogenic DOM load into stream ecosystems and alters the fluvial metabolism. We further propose that chemically distinct, manmade DOM extends the natural range of DOM decomposition rates in fluvial ecosystems.
Department of Functional and Evolutionary Ecology University of Vienna 1090 Vienna Austria
Wassercluster Lunz Biologische Station GmbH 3293 Lunz am See Austria
Zobrazit více v PubMed
Cole J. J.; Prairie Y. T.; Caraco N. F.; McDowell W. H.; Tranvik L. J.; Striegl R. G.; Duarte C. M.; Kortelainen P.; Downing J. A.; Middelburg J. J.; Melack J. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 172–185. 10.1007/s10021-006-9013-8. DOI
Regnier P.; Friedlingstein P.; Ciais P.; Mackenzie F. T.; Gruber N.; Janssens I. A.; Laruelle G. G.; Lauerwald R.; Luyssaert S.; Andersson A. J.; Arndt S.; Arnosti C.; Borges A. V.; Dale A. W.; Gallego-Sala A.; Goddéris Y.; Goossens N.; Hartmann J.; Heinze C.; Ilyina T.; Joos F.; Larowe D. E.; Leifeld J.; Meysman F. J. R.; Munhoven G.; Raymond P. A.; Spahni R.; Suntharalingam P.; Thullner M. Anthropogenic Perturbation of the Carbon Fluxes from Land to Ocean. Nat. Geosci 2013, 6, 597.10.1038/ngeo1830. DOI
Hotchkiss E. R.; Hall R. O. Jr.; Sponseller R. A.; Butman D.; Klaminder J.; Laudon H.; Rosvall M.; Karlsson J. Sources of and Processes Controlling CO2 Emissions Change with the Size of Streams and Rivers. Nat. Geosci. 2015, 8, 696–699. 10.1038/ngeo2507. DOI
Catalán N.; Casas-Ruiz J. P.; von Schiller D.; Proia L.; Obrador B.; Zwirnmann E.; Marcé R. Biodegradation Kinetics of Dissolved Organic Matter Chromatographic Fractions in an Intermittent River. J. Geophys. Res. Biogeosci. 2017, 122, 131–144. 10.1002/2016JG003512. DOI
Tranvik L. J.; Downing J. A.; Cotner J. B.; Loiselle S. A.; Striegl R. G.; Ballatore T. J.; Dillon P.; Finlay K.; Fortino K.; Knoll L. B.; Kortelainen P. L.; Kutser T.; Larsen S.; Laurion I.; Leech D. M.; Leigh McCallister S.; McKnight D. M.; Melack J. M.; Overholt E.; Porter J. A.; Prairie Y.; Renwick W. H.; Roland F.; Sherman B. S.; Schindler D. W.; Sobek S.; Tremblay A.; Vanni M. J.; Verschoor A. M.; von Wachenfeldt E.; Weyhenmeyer G. A. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnol. Oceanogr. 2009, 2298.10.4319/lo.2009.54.6_part_2.2298. DOI
Nicolaou K. C. Organic Synthesis: The Art and Science of Replicating the Molecules of Living Nature and Creating Others like Them in the Laboratory. Proc. R. Soc. A 2014, 20130690.10.1098/rspa.2013.0690. PubMed DOI PMC
Meng F.; Huang G.; Yang X.; Li Z.; Li J.; Cao J.; Wang Z.; Sun L. Identifying the Sources and Fate of Anthropogenically Impacted Dissolved Organic Matter (DOM) in Urbanized Rivers. Water Res. 2013, 5027.10.1016/j.watres.2013.05.043. PubMed DOI
Bernhardt E. S.; Rosi E. J.; Gessner M. O. Synthetic Chemicals as Agents of Global Change. Front. Ecol. Environ. 2017, 15, 84–90. 10.1002/fee.1450. DOI
EEA . State of Nature in the EU — Results from Reporting under the Nature Directives 2007–2012; European Environment Agency: Luxembourg, 2015. 10.2800/603862. DOI
Gössling S.; Peeters P. Assessing Tourism’s Global Environmental Impact 1900–2050. J. Sustain. Tour. 2015, 639.10.1080/09669582.2015.1008500. DOI
Seredyńska-Sobecka B.; Stedmon C. A.; Boe-Hansen R.; Waul C. K.; Arvin E. Monitoring Organic Loading to Swimming Pools by Fluorescence Excitation-Emission Matrix with Parallel Factor Analysis (PARAFAC). Water Res. 2011, 2306.10.1016/j.watres.2011.01.010. PubMed DOI
Daiber E. J.; DeMarini D. M.; Ravuri S. A.; Liberatore H. K.; Cuthbertson A. A.; Thompson-Klemish A.; Byer J. D.; Schmid J. E.; Afifi M. Z.; Blatchley E. R. III; Richardson S. D. Progressive Increase in Disinfection Byproducts and Mutagenicity from Source to Tap to Swimming Pool and Spa Water: Impact of Human Inputs. Environ. Sci. Technol. 2016, 6652.10.1021/acs.est.6b00808. PubMed DOI
Jiang J.-J.; Lee C.-L.; Fang M.-D.; Tu B.-W.; Liang Y.-J. Impacts of Emerging Contaminants on Surrounding Aquatic Environment from a Youth Festival. Environ. Sci. Technol. 2015, 49, 792–799. 10.1021/es503944e. PubMed DOI
Daneshvar A.; Svanfelt J.; Kronberg L.; Weyhenmeyer G. A. Neglected Sources of Pharmaceuticals in River Water - Footprints of a Reggae Festival. J. Environ. Monit. 2012, 14, 596–603. 10.1039/c1em10551e. PubMed DOI
Ruhala S. S.; Zarnetske J. P. Using In-Situ Optical Sensors to Study Dissolved Organic Carbon Dynamics of Streams and Watersheds: A Review. Sci. Total Environ. 2017, 713–723. 10.1016/j.scitotenv.2016.09.113. PubMed DOI
Minor E. C.; Swenson M. M.; Mattson B. M.; Oyler A. R. Structural Characterization of Dissolved Organic Matter: A Review of Current Techniques for Isolation and Analysis. Environ. Sci.: Processes Impacts. 2014, 2064.10.1039/c4em00062e. PubMed DOI
Stedmon C. A.; Bro R. Characterizing Dissolved Organic Matter Fluorescence with Parallel Factor Analysis: A Tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. 10.4319/lom.2008.6.572. DOI
Odum H. T. Primary Production in Flowing Waters 1. Limnol. Oceanogr 1956, 1, 102–117. 10.4319/lo.1956.1.2.0102. DOI
Cole J. J.; Caraco N. F. Carbon in Catchments: Connecting Terrestrial Carbon Losses with Aquatic Metabolism. Mar. Freshwater Res. 2001, 52, 101–110. 10.1071/MF00084. DOI
Tank J. L.; Rosi-Marshall E. J.; Griffiths N. A.; Entrekin S. A.; Stephen M. L. A Review of Allochthonous Organic Matter Dynamics and Metabolism in Streams. J. North Am. Benthol. Soc. 2010, 29, 118–146. 10.1899/08-170.1. DOI
Hall R. O. Jr.; Tank J. L.; Baker M. A.; Rosi-Marshall E. J.; Hotchkiss E. R. Metabolism, Gas Exchange, and Carbon Spiraling in Rivers. Ecosystems 2016, 19, 73–86. 10.1007/s10021-015-9918-1. DOI
Graeber D.; Gelbrecht J.; Pusch M. T.; Anlanger C.; von Schiller D. Agriculture Has Changed the Amount and Composition of Dissolved Organic Matter in Central European Headwater Streams. Sci. Total Environ. 2012, 438, 435–446. 10.1016/j.scitotenv.2012.08.087. PubMed DOI
Fuß T.; Behounek B.; Ulseth A. J.; Singer G. A. Land Use Controls Stream Ecosystem Metabolism by Shifting Dissolved Organic Matter and Nutrient Regimes. Freshw. Biol. 2017, 62, 582–599. 10.1111/fwb.12887. DOI
Von Schiller D.; Martí E.; Riera J. L.; Ribot M.; Marks J. C.; Sabater F. Influence of Land Use on Stream Ecosystem Function in a Mediterranean Catchment. Freshw. Biol. 2008, 53, 2600–2612. 10.1111/j.1365-2427.2008.02059.x. DOI
Hosen J. D.; McDonough O. T.; Febria C. M.; Palmer M. A. Dissolved Organic Matter Quality and Bioavailability Changes across an Urbanization Gradient in Headwater Streams. Environ. Sci. Technol. 2014, 48, 7817.10.1021/es501422z. PubMed DOI
Smith R. M.; Kaushal S. S. Carbon Cycle of an Urban Watershed: Exports, Sources, and Metabolism. Biogeochemistry 2015, 126, 173–195. 10.1007/s10533-015-0151-y. DOI
Yates A. G.; Brua R. B.; Culp J. M.; Chambers P. A. Multi-Scaled Drivers of Rural Prairie Stream Metabolism along Human Activity Gradients. Freshwater Biol. 2013, 675.10.1111/fwb.12072. DOI
Gücker B.; Brauns M.; Pusch M. T. Effects of Wastewater Treatment Plant Discharge on Ecosystem Structure and Function of Lowland Streams. J. North Am. Benthol. Soc. 2006, 313.10.1899/0887-3593(2006)25[313:eowtpd]2.0.co;2. DOI
Böck E.Vergleichende Hydrobotanische Untersuchung and Einem Belasteten Niederösterreichischen Flusssystem Am Beispiel Traisen; Universität Wien, 1979.
Pelikan B.; Panek K.; Erhart-Schippek W.. Wasserkraftnutzung an Der Unteren Traisen Unter Berücksichtigung Des Gewässerbetreuungskonzeptes (GBK) 1999; Vienna, 2004.
Stumwöhrer K.; Matsché N.; Winkler S. Influence of Changes of the Wastewater Composition on the Applicability of UV-Absorption Measurements at Combined Sewer Overflows. Water Sci. Technol. 2003, 47, 73–78. 10.2166/wst.2003.0088. PubMed DOI
Grabic R.; Fick J.; Lindberg R. H.; Fedorova G.; Tysklind M. Multi-Residue Method for Trace Level Determination of Pharmaceuticals in Environmental Samples Using Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Talanta 2012, 183.10.1016/j.talanta.2012.08.032. PubMed DOI
Grabicova K.; Vojs Staňová A.; Koba Ucun O.; Borik A.; Randak T.; Grabic R. Development of a Robust Extraction Procedure for the HPLC-ESI-HRPS Determination of Multi-Residual Pharmaceuticals in Biota Samples. Anal. Chim. Acta 2018, 1022, 53–60. 10.1016/j.aca.2018.04.011. PubMed DOI
Murphy K. R.; Stedmon C. A.; Graeber D.; Bro R. Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC. Anal. Methods 2013, 5, 6557.10.1039/c3ay41160e. DOI
Parr T. B.; Ohno T.; Cronan C. S.; Simon K. S. ComPARAFAC: A Library and Tools for Rapid and Quantitative Comparison of Dissolved Organic Matter Components Resolved by Parallel Factor Analysis. Limnol. Oceanogr. Methods 2014, 114.10.4319/lom.2014.12.114. DOI
Appling A. P.; Hall R. O.; Arroita M.; Yackulic C. B.. StreamMetabolizer: Models for Estimating Aquatic Photosynthesis and Respiration. 2017.
Berggren M.; Lapierre J. F.; Del Giorgio P. A. Magnitude and Regulation of Bacterioplankton Respiratory Quotient across Freshwater Environmental Gradients. ISME J. 2012, 984.10.1038/ismej.2011.157. PubMed DOI PMC
Carpenter S. R.; Frost T. M.; Heisey D.; Kratz T. K. Randomized Intervention Analysis and the Interpretation of Whole-Ecosystem Experiments. Ecology 1989, 1142.10.2307/1941382. DOI
Bried J. T.; Ervin G. N. Randomized Intervention Analysis for Detecting Non-Random Change and Management Impact: Dragonfly Examples. Ecol. Indic. 2011, 11, 535–539. 10.1016/j.ecolind.2010.07.009. DOI
Löfgren S.; Ring E.; von Brömssen C.; Sørensen R.; Högbom L. Short-Term Effects of Clear-Cutting on the Water Chemistry of Two Boreal Streams in Northern Sweden: A Paired Catchment Study. AMBIO A J. Hum. Environ. 2009, 347.10.1579/0044-7447-38.7.347. PubMed DOI
R Team Development Core . R: A Language and Environment for Statistical Computing; R Team Development Core: Vienna, Austria: 2008.
Hothorn T.; Bretz F.; Westfall P.; Heiberger R. M.; Schuetzenmeister A.; Scheibe S.; Hothorn M. T.. Package ‘Multcomp.’ Simultaneous inference Gen. Parametr. Model. Proj. Stat. Comput. Vienna, Austria ;CRC Press, 2016.
Evans C.; Davies T. D. Causes of Concentration/Discharge Hysteresis and Its Potential as a Tool for Analysis of Episode Hydrochemistry. Water Resour. Res. 1998, 129.10.1029/97WR01881. DOI
Lambert T.; Pierson-Wickmann A. C.; Gruau G.; Jaffrezic A.; Petitjean P.; Thibault J. N.; Jeanneau L. DOC Sources and DOC Transport Pathways in a Small Headwater Catchment as Revealed by Carbon Isotope Fluctuation during Storm Events. Biogeosciences 2014, 11, 3043–3056. 10.5194/bg-11-3043-2014. DOI
Saraceno J. F.; Pellerin B. A.; Downing B. D.; Boss E.; Bachand P. A. M.; Bergamaschi B. A. High-Frequency in Situ Optical Measurements during a Storm Event: Assessing Relationships between Dissolved Organic Matter, Sediment Concentrations, and Hydrologic Processes. J. Geophys. Res. Biogeosci. 2009, 114, G00F0910.1029/2009JG000989. DOI
Baker A.; Spencer R. G. M. Characterization of Dissolved Organic Matter from Source to Sea Using Fluorescence and Absorbance Spectroscopy. Sci. Total Environ. 2004, 217.10.1016/j.scitotenv.2004.04.013. PubMed DOI
Fellman J. B.; Hood E.; Spencer R. G. M. Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review. Limnol. Oceanogr. 2010, 55, 2452–2462. 10.4319/lo.2010.55.6.2452. DOI
Baker A.; Cumberland S. A.; Bradley C.; Buckley C.; Bridgeman J. To What Extent Can Portable Fluorescence Spectroscopy Be Used in the Real-Time Assessment of Microbial Water Quality?. Sci. Total Environ. 2015, 14.10.1016/j.scitotenv.2015.05.114. PubMed DOI
Henderson R. K.; Baker A.; Murphy K. R.; Hambly A.; Stuetz R. M.; Khan S. J. Fluorescence as a Potential Monitoring Tool for Recycled Water Systems: A Review. Water Res. 2009, 863.10.1016/j.watres.2008.11.027. PubMed DOI
Yan S.; Yao B.; Lian L.; Lu X.; Snyder S. A.; Li R.; Song W. Development of Fluorescence Surrogates to Predict the Photochemical Transformation of Pharmaceuticals in Wastewater Effluents. Environ. Sci. Technol. 2017, 51, 2738–2747. 10.1021/acs.est.6b05251. PubMed DOI
Mackul’ak T.; Brandeburová P.; Grenčíková A.; Bodík I.; Staňová A. V.; Golovko O.; Koba O.; Mackul’aková M.; Špalková V.; Gál M.; Grabic R. Music Festivals and Drugs: Wastewater Analysis. Sci. Total Environ. 2019, 659, 326–334. 10.1016/j.scitotenv.2018.12.275. PubMed DOI
Hanson J. E.; Antonacci C.. Natural Sunscreen Composition. U.S. Patent No. 9,056,063,2013.
Kim D.; Kim S.; Kim S. A.; Choi M.; Kwon K. J.; Kim M.; Kim D. S.; Kim S. H.; Choi B. K. Simultaneous Analysis and Monitoring of 16 UV Filters in Cosmetics by High-Performance Liquid Chromatography. J.Cosmet.Sci 2012, 63, 103–117. PubMed
Poiger T.; Buser H. R.; Balmer M. E.; Bergqvist P. A.; Müller M. D. Occurrence of UV Filter Compounds from Sunscreens in Surface Waters: Regional Mass Balance in Two Swiss Lakes. Chemosphere 2004, 951.10.1016/j.chemosphere.2004.01.012. PubMed DOI
Grabicova K.; Fedorova G.; Burkina V.; Steinbach C.; Schmidt-Posthaus H.; Zlabek V.; Kocour Kroupova H.; Grabic R.; Randak T. Presence of UV Filters in Surface Water and the Effects of Phenylbenzimidazole Sulfonic Acid on Rainbow Trout (Oncorhynchus Mykiss) Following a Chronic Toxicity Test. Ecotoxicol. Environ. Saf. 2013, 41.10.1016/j.ecoenv.2013.06.022. PubMed DOI
Herzog B. Photoprotection of Human Skin. Photochemistry. 2012, 10.1039/9781849734882-00245. DOI
Wilson H. F.; Xenopoulos M. A. Effects of Agricultural Land Use on the Composition of Fluvial Dissolved Organic Matter. Nat. Geosci. 2009, 2, 37–41. 10.1038/Ngeo391. DOI
Burns M. A.; Barnard H. R.; Gabor R. S.; McKnight D. M.; Brooks P. D. Dissolved Organic Matter Transport Reflects Hillslope to Stream Connectivity during Snowmelt in a Montane Catchment. Water Resour. Res. 2016, 4905.10.1002/2015WR017878. DOI
Fox B. G.; Thorn R. M. S.; Anesio A. M.; Reynolds D. M. The in Situ Bacterial Production of Fluorescent Organic Matter; an Investigation at a Species Level. Water Res. 2017, 350.10.1016/j.watres.2017.08.040. PubMed DOI
Wünsch U. J.; Stedmon C. A.; Tranvik L. J.; Guillemette F. Unraveling the Size-Dependent Optical Properties of Dissolved Organic Matter. Limnol. Oceanogr. 2018, 588.10.1002/lno.10651. DOI
Cory R. M.; Kaplan L. A. Biological Lability of Streamwater Fluorescent Dissolved Organic Matter. Limnol. Oceanogr. 2012, 57, 1347–1360. 10.4319/lo.2012.57.5.1347. DOI
Hansen A. M.; Kraus T. E. C.; Pellerin B. A.; Fleck J. A.; Downing B. D.; Bergamaschi B. A. Optical Properties of Dissolved Organic Matter (DOM): Effects of Biological and Photolytic Degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. 10.1002/lno.10270. DOI
Petersen B.; Wulf H. C. Application of Sunscreen - Theory and Reality. Photodermatology Photoimmunology and Photomedicine. 2014, 96.10.1111/phpp.12099. PubMed DOI
Ruszkiewicz J. A.; Pinkas A.; Ferrer B.; Peres T. V.; Tsatsakis A.; Aschner M. Neurotoxic Effect of Active Ingredients in Sunscreen Products, a Contemporary Review. Toxicol. Rep. 2017, 245.10.1016/j.toxrep.2017.05.006. PubMed DOI PMC
Zwiener C.; Richardson S. D.; De Marini D. M.; Grummt T.; Glauner T.; Frimmel F. H. Drowning in Disinfection Byproducts? Assessing Swimming Pool Water. Environ. Sci. Technol. 2007, 41, 363–372. 10.1021/es062367v. PubMed DOI
Díaz-Cruz M. S.; Barceló D. Chemical Analysis and Ecotoxicological Effects of Organic UV-Absorbing Compounds in Aquatic Ecosystems. TrAC, Trends Anal. Chem. 2009, 708.10.1016/j.trac.2009.03.010. DOI
Abdelraheem W. H. M.; He X.; Duan X.; Dionysiou D. D. Degradation and Mineralization of Organic UV Absorber Compound 2-Phenylbenzimidazole-5-Sulfonic Acid (PBSA) Using UV-254nm/H2O2. J. Hazard. Mater. 2015, 233.10.1016/j.jhazmat.2014.07.041. PubMed DOI
Aristi I.; von Schiller D.; Arroita M.; Barceló D.; Ponsatí L.; García-Galán M. J.; Sabater S.; Elosegi A.; Acuña V. Mixed Effects of Effluents from a Wastewater Treatment Plant on River Ecosystem Metabolism: Subsidy or Stress?. Freshwaters Biol. 2015, 60, 1398–1410. 10.1111/fwb.12576. DOI
Venohr M.; Langhans S. D.; Peters O.; Hölker F.; Arlinghaus R.; Mitchell L.; Wolter C. The Underestimated Dynamics and Impacts of Water-Based Recreational Activities on Freshwater Ecosystems. Environ. Rev. 2018, 199.10.1139/er-2017-0024. DOI
Cawley K. M.; Butler K. D.; Aiken G. R.; Larsen L. G.; Huntington T. G.; McKnight D. M. Identifying Fluorescent Pulp Mill Effluent in the Gulf of Maine and Its Watershed. Mar. Pollut. Bull. 2012, 64, 1678–1687. 10.1016/j.marpolbul.2012.05.040. PubMed DOI
Wünsch U. J.; Acar E.; Koch B. P.; Murphy K. R.; Schmitt-Kopplin P.; Stedmon C. A. The Molecular Fingerprint of Fluorescent Natural Organic Matter Offers Insight into Biogeochemical Sources and Diagenetic State. Anal. Chem. 2018, 14188.10.1021/acs.analchem.8b02863. PubMed DOI
Gabor R. S.; McKnight D. M.; Miller M. P. Indices and Their Interpretation. Aquat. Org. Matter Fluoresc. 2014, 303.10.1017/cbo9781139045452.015. DOI
Wang Z.; Xu Z.; Wu Y.; Zhang Z.; Li X. Impact of Ketamine on the Behavior and Immune System of Adult Medaka (Oryzias Latipes) at Environmentally Relevant Concentrations and Eco-Risk Assessment in Surface Water. J. Hazard. Mater. 2020, 393, 121577.10.1016/j.jhazmat.2019.121577. PubMed DOI
Catalán N.; Marcé R.; Kothawala D. N.; Tranvik L. J. Organic Carbon Decomposition Rates Controlled by Water Retention Time across Inland Waters. Nat. Geosci. 2016, 9, 501.10.1038/ngeo2720. DOI