Conserved satellite DNA motif and lack of interstitial telomeric sites in highly rearranged African Nothobranchius killifish karyotypes

. 2023 Dec ; 103 (6) : 1501-1514. [epub] 20230919

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37661806

Grantová podpora
204069 Charles University Research Centre
19-22346Y Grantová Agentura České Republiky
EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE Ministerstvo Školství, Mládeže a Tělovýchovy
67985904 RVO IAPG CAS

Using African annual killifishes of the genus Nothobranchius from temporary savannah pools with rapid karyotype and sex chromosome evolution, we analysed the chromosomal distribution of telomeric (TTAGGG)n repeat and Nfu-SatC satellite DNA (satDNA; isolated from Nothobranchius furzeri) in 15 species across the Nothobranchius killifish phylogeny, and with Fundulosoma thierryi as an out-group. Our fluorescence in situ hybridization experiments revealed that all analysed taxa share the presence of Nfu-SatC repeat but with diverse organization and distribution on chromosomes. Nfu-SatC landscape was similar in conspecific populations of Nothobranchius guentheri and Nothobranchius melanospilus but slightly-to-moderately differed between populations of Nothobranchius pienaari, and between closely related Nothobranchius kuhntae and Nothobranchius orthonotus. Inter-individual variability in Nfu-SatC patterns was found in N. orthonotus and Nothobranchius krysanovi. We revealed mostly no sex-linked patterns of studied repetitive DNA distribution. Only in Nothobranchius brieni, possessing multiple sex chromosomes, Nfu-SatC repeat occupied a substantial portion of the neo-Y chromosome, similarly as formerly found in the XY sex chromosome system of turquoise killifish N. furzeri and its sister species Nothobranchius kadleci-representatives not closely related to N. brieni. All studied species further shared patterns of expected telomeric repeats at the ends of all chromosomes and no additional interstitial telomeric sites. In summary, we revealed (i) the presence of conserved satDNA class in Nothobranchius clades (a rare pattern among ray-finned fishes); (ii) independent trajectories of Nothobranchius sex chromosome differentiation, with recurrent and convergent accumulation of Nfu-SatC on the Y chromosome in some species; and (iii) genus-wide shared tendency to loss of telomeric repeats during interchromosomal rearrangements. Collectively, our findings advance our understanding of genome structure, mechanisms of karyotype reshuffling, and sex chromosome differentiation in Nothobranchius killifishes from the genus-wide perspective.

Zobrazit více v PubMed

Ávila Robledillo, L. A., Neumann, P., Koblížková, A., Novák, P., Vrbová, I., & Macas, J. (2020). Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Molecular Biology and Evolution, 37, 2341-2356.

Balachandran, P., Walawalkar, I. A., Flores, J. I., Dayton, J. N., Audano, P. A., & Beck, C. R. (2022). Transposable element-mediated rearrangements are prevalent in human genomes. Nature Communications, 13, 7115.

Bartakova, V., & Reichard, M. (2023). Genetic diversity of the genus Nothobranchius in Tanzania based on ddRAD sequencing. In Conference abstract: 5th Nothobranchius symposium, University of Leuven, in litt. https://notho-2023.be/

Bartáková, V., Reichard, M., Blažek, R., Polačik, M., & Bryja, J. (2015). Terrestrial fishes: Rivers are barriers to gene flow in annual fishes from the African savanna. Journal of Biogeography, 42, 1832-1844.

Bartáková, V., Reichard, M., Janko, K., Polačik, M., Blažek, R., Reichwald, K., Cellerino, A., & Bryja, J. (2013). Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evolutionary Biology, 13, 196.

Bellafronte, E., Margarido, V. P., & Moreira-Filho, O. (2005). Cytotaxonomy of Parodon nasus and Parodon tortuosus (Pisces, Characiformes). A case of synonymy confirmed by cytogenetic analyses. Genetics and Molecular Biology, 28, 710-716.

Berois, N., García, G., & de Sá, R. O. (2016). Annual fishes: Life history strategy, diversity and evolution. CRC Press.

Bertollo, L. A. C., Cioffi, M. B., & Moreira-Filho, O. (2015). Direct chromosome preparation from freshwater teleost fishes. In C. Ozouf-Costaz, E. Pisano, F. Foresti, & L. F. de Almeida-Toledo (Eds.), Fish cytogenetic techniques ray-fin fishes and chondrichthyans (pp. 21-26). CRC Press. https://doi.org/10.1201/b18534-4

Biscotti, M. A., Canapa, A., Forconi, M., Olmo, E., & Barucca, M. (2015). Transcription of tandemly repetitive DNA: Functional roles. Chromosome Research, 23, 463-477.

Blažek, R., Polačik, M., Kačer, P., Cellerino, A., Řežucha, R., Methling, C., Tomášek, O., Syslová, K., Terzibasi Tozzini, E., Albrecht, T., Vrtílek, M., & Reichard, M. (2017). Repeated intraspecific divergence in life span and aging of African annual fishes along an aridity gradient. Evolution, 71, 386-402.

Blažek, R., Polačik, M., & Reichard, M. (2013). Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo, 4, 24.

Blommaert, J., Riss, S., Hecox-Lea, B., Mark Welch, D. B., & Stelzer, C. P. (2019). Small, but surprisingly repetitive genomes: Transposon expansion and not polyploidy has driven a doubling in genome size in a metazoan species complex. BMC Genomics, 20, 466.

Bolzán, A. D. (2012). Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis, 27, 1-15.

Bracewell, R., Chatla, K., Nalley, M. J., & Bachtrog, D. (2019). Dynamic turnover of centromeres drives karyotype evolution in Drosophila. eLife, 8, e49002.

Brown, R. E., & Freudenreich, C. H. (2022). Structure-forming repeats and their impact on genome stability. Current Opinion in Genetics & Development, 67, 41-51.

Camacho, J. P. M., Cabrero, J., López-León, M. D., Martín-Peciña, M., Perfectti, F., Garrido-Ramos, M. A., & Ruiz-Ruano, F. J. (2022). Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biology, 20, 36.

Cellerino, A., Valenzano, D. R., & Reichard, M. (2016). From the bush to the bench: The annual Nothobranchius fishes as a new model system in biology. Biological Reviews of the Cambridge Philosophical Society, 91, 511-533.

Charlesworth, B., Sniegowski, P., & Stephan, W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371, 215-220.

Cioffi, M. B., & Bertollo, L. A. C. (2012). Chromosomal distribution and evolution of repetitive DNAs in fish. In M. A. Garrido-Ramos (Ed.), Repetitive DNA. Genome dynamics (Vol. 7, pp. 197-221). Karger. https://doi.org/10.1159/000337118

Crepaldi, C., & Parise-Maltempi, P. P. (2020). Heteromorphic sex chromosomes and their DNA content in fish: An insight through satellite DNA accumulation in Megaleporinus elongatus. Cytogenetic and Genome Research, 160, 38-46.

Cui, R., Medeiros, T., Willemsen, D., Iasi, L. N. M., Collier, G. E., Graef, M., Reichard, M., & Valenzano, D. R. (2019). Relaxed selection limits lifespan by increasing mutation load. Cell, 178, 385-399.e20.

Dorn, A., Musilová, Z., Platzer, M., Reichwald, K., & Cellerino, A. (2014). The strange case of east African annual fish: Aridification correlates with diversification for a savannah aquatic group? BMC Evolutionary Biology, 14, 210.

dos Santos, R. Z., Calegari, R. M., Silva, D. M. Z. d. A., Ruiz-Ruano, F. J., Melo, S., Oliveira, C., Foresti, F., Uliano-Silva, M., Porto-Foresti, F., & Utsunomia, R. (2021). A long-term conserved satellite DNA that remains unexpanded in several genomes of Characiformes fish is actively transcribed. Genome Biology and Evolution, 13, evab002.

Ewulonu, U. V., Haas, R., & Turner, B. J. (1985). A multiple sex chromosome system in the annual killifish, Nothobranchius guentheri. Copeia, 1985, 503-508.

Feliciello, I., Akrap, I., Brajkovi, J., Zlatar, I., & Ugarković, Đ. (2014). Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum. Genome Biology and Evolution, 7, 228-239.

Feliciello, I., Pezer, Ž., Sermek, A., Mađarić, B. B., Ljubić, S., & Ugarković, Đ. (2021). Satellite DNA-mediated gene expression regulation: Physiological and evolutionary implication. In Ð. Ugarković (Ed.), Satellite DNAs in physiology and evolution. Progress in molecular and subcellular biology (Vol. 60, pp. 145-167) Springer. https://doi.org/10.1007/978-3-030-74889-0_6

Ferree, P. M., & Barbash, D. A. (2009). Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biology, 7, e1000234.

Fricke, R., Eschmeyer, W. N., & Van der Laan, R. (2023). Eschmeyer's catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/ishcatmain.asp (accessed 3 May 2023).

Fry, K., & Salser, W. (1977). Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell, 12, 1069-1084.

Furness, A. I. (2016). The evolution of an annual life cycle in killifish: Adaptation to ephemeral aquatic environments through embryonic diapause. Biological Reviews of the Cambridge Philosophical Society, 91, 796-812.

Garrido-Ramos, M. A. (2017). Satellite DNA: An evolving topic. Genes, 8, 230.

Glugoski, L., Deon, G., Schott, S., Vicari, M. R., Nogaroto, V., & Moreira-Filho, O. (2020). Comparative cytogenetic analyses in Ancistrus species (Siluriformes: Loricariidae). Neotropical Ichthyology, 18, e200013.

Goes, C. A. G., Daniel, S. N., Piva, L. H., Yasui, G. S., Artoni, R. F., Hashimoto, D. T., Foresti, F., & Porto-Foresti, F. (2020). Cytogenetic markers as a tool for characterization of hybrids of Astyanax Baird & Girard, 1854 and Hyphessobrycon Eigenmann, 1907. Comparative Cytogenetics, 14, 231-242.

Goes, C. A. G., dos Santos, N., Rodrigues, P. H. M., Stornioli, J. H. F., Silva, A. B. D., dos Santos, R. Z., Vidal, J. A. D., Silva, D. M. Z. A., Artoni, R. F., Foresti, F., Hashimoto, D. T., Porto-Foresti, F., & Utsunomia, R. (2023). The satellite DNA catalogues of two Serrasalmidae (Teleostei, Characiformes): Conservation of general satDNA features over 30 million years. Genes, 14, 91.

Goes, C. A. G., dos Santos, R. Z., Aguiar, W. R. C., Alves, D. C. V., Silva, D. M. Z. D. A., Foresti, F., Oliveira, C., Utsunomia, R., & Porto-Foresti, F. (2022). Revealing the satellite DNA history in Psalidodon and Astyanax characid fish by comparative satellitomics. Frontiers in Genetics, 13, 884072.

Haaf, T., & Schmid, M. (1984). An early stage of ZZ/ZW sex chromosomes differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes). Chromosoma, 89, 37-41.

Hartley, G., & O'Neill, R. J. (2019). Centromere repeats: Hidden gems of the genome. Genes, 10, 223.

Hu, C. K., & Brunet, A. (2018). The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell, 17, e12757.

Kent, T. V., Uzunović, J., & Wright, S. I. (2017). Coevolution between transposable elements and recombination. Philosophical Transactions of the Royal Society B, 372, 20160458.

King, M. (1993). Species evolution: The role of chromosomal change. Cambridge University Press.

Kligerman, A. D., & Bloom, S. E. (1977). Rapid chromosome preparations from solid tissues of fishes. Journal of the Fisheries Research Board of Canada, 34, 266-269.

Kretschmer, R., Goes, C. A. G., Bertollo, L. A. C., Ezaz, T., Porto-Foresti, F., Toma, G. A., Utsunomia, R., & Cioffi, M. B. (2022). Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma, 131, 29-45.

Krysanov, E., & Demidova, T. (2018). Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes). Comparative Cytogenetetics, 12, 387-402.

Krysanov, E., Demidova, T., & Nagy, B. (2016). Divergent karyotypes of the annual killifish genus Nothobranchius (Cyprinodontiformes, Nothobranchiidae). Comparative Cytogenetics, 10, 439-445.

Krysanov, E. Y., Nagy, B., Watters, B. R., Sember, A., & Simanovsky, S. A. (2023). Karyotype differentiation in the Nothobranchius ugandensis species group (Teleostei, Cyprinodontiformes), seasonal fishes from the east African inland plateau, in the context of phylogeny and biogeography. Comparative Cytogenetics, 7, 13-29.

Lazzerini-Denchi, E., & Sfeir, A. (2016). Stop pulling my strings-What telomeres taught us about the DNA damage response. Nature Reviews Molecular Cell Biology, 17, 364-378.

Lee, J., Waminal, N. E., Il, C. H., Perumal, S., Lee, S. C., Nguyen, V. B., Jang, W., Kim, N. H., Gao, L. Z., & Yang, T.-J. (2017). Rapid amplification of four retrotransposon families promoted speciation and genome size expansion in the genus Panax. Scientific Reports, 7, 9045.

Levan, A. K., Fredga, K., & Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas, 52, 201-220.

Li, S. F., Su, T., Cheng, G. Q., Wang, B. X., Li, X., Deng, C. L., & Gao, W.-J. (2017). Chromosome evolution in connection with repetitive sequences and epigenetics in plants. Genes, 8, 290.

López-Flores, I., & Garrido-Ramos, M. A. (2012). The repetitive DNA content of eukaryotic genomes. In M. A. Garrido-Ramos (Ed.), Repetitive DNA. Genome dynamics (Vol. 7, pp. 1-28). Karger. https://doi.org/10.1159/000337118

Louzada, S., Lopes, M., Ferreira, D., Adega, F., Escudeiro, A., Gama-Carvalho, M., & Chaves, R. (2020). Decoding the role of satellite DNA in genome architecture and plasticity-An evolutionary and clinical affair. Genes, 11, 72.

Lower, S. S., McGurk, M. P., Clark, A. G., & Barbash, D. A. (2018). Satellite DNA evolution: Old ideas, new approaches. Current Opinion in Genetics & Development, 49, 70-78.

MacPherson, N., Champion, C. P., Weir, L. K., & Dalziel, A. C. (2023). Reproductive isolating mechanisms contributing to asymmetric hybridization in killifishes (Fundulus spp.). Journal of Evolutionary Biology, 36, 605-621.

Marajó, L., Viana, P. F., Ferreira, A. M. V., Py-Daniel, L. H. R., Cioffi, M. B., Sember, A., & Feldberg, E. (2023). Chromosomal rearrangements and the first indication of an ♀X1X1X2X2/♂ X1X2Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). Journal of Fish Biology, 102, 443-454.

Marta, A., Dedukh, D., Bartoš, O., Majtanová, Z., & Janko, K. (2020). Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes, 11, 617.

Melters, D. P., Bradnam, K. R., Young, H. A., Telis, N., May, M. R., Ruby, J. G., Sebra, R., Peluso, P., Eid, J., Rank, D., Garcia, J. F., DeRisi, J. L., Smith, T., Tobias, C., Ross-Ibarra, J., Korf, I., & Chan, S. W. L. (2013). Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology, 14, R10.

Meyne, J., Baker, R. J., Hobart, H. H., Hsu, T. C., Ryder, O. A., Ward, O. G., Wiley, J. E., Wurster-Hill, D. H., Yates, T. L., & Moyzis, R. K. (1990). Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma, 99, 3-10.

Nagy, B. (2018). Nothobranchius ditte, a new species of annual killifish from the Lake Mweru basin in The Democratic Republic of the Congo (Teleostei: Nothobranchiidae). Ichthyo-Logical Exploration of Freshwaters, 28, 115-134.

Nagy, B., & Watters, B. R. (2022). A review of the conservation status of seasonal Nothobranchius fishes (Teleostei: Cyprinodontiformes), a genus with a high level of threat, inhabiting ephemeral wetland habitats in Africa. Aquatic Conservation: Marine and Freshwater Ecosystems, 32, 199-216.

Nanda, I., Schories, S., Tripathi, N., Dreyer, C., Haaf, T., Schmid, M., & Schartl, M. (2014). Sex chromosome polymorphism in guppies. Chromosoma, 123, 373-383.

Nonaka, E., Sirén, J., Somervuo, P., Ruokolainen, L., Ovaskainen, O., & Hanski, I. (2019). Scaling up the effects of inbreeding depression from individuals to metapopulations. Journal of Animal Ecology, 88, 1202-1214.

Novák, P., Neumann, P., & Macas, J. (2020). Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols, 15, 3745-3776.

Ocalewicz, K. (2013). Telomeres in fishes. Cytogenetic and Genome Research, 141, 114-125.

O'Sullivan, R. J., & Karlseder, J. (2010). Telomeres: Protecting chromosomes against genome instability. Nature Reviews Molecular Cell Biology, 11, 171-181.

Plohl, M., Meštrović, N., & Mravinac, B. (2012). Satellite DNA evolution. In M. A. Garrido-Ramos (Ed.), Repetitive DNA. Genome dynamics (Vol. 7, pp. 126-152). Karger. https://doi.org/10.1159/000337118

Polačik, M., & Reichard, M. (2011). Asymmetric reproductive isolation between two sympatric annual killifish with extremely short lifespans. PLoS One, 6, e22684.

Ráb, P., & Roth, P. (1988). Cold-blooded vertebrates. In P. Balicek, J. Forejt, & J. Rubeš (Eds.), Methods of chromosome analysis (pp. 115-124). Brno, Czech Republic.

Reichard, M., Giannetti, K., Ferreira, T., Maouche, A., Vrtílek, M., Polačik, M., Blažek, R., & Ferreira, M. G. (2022). Lifespan and telomere length variation across populations of wild-derived African killifish. Molecular Ecology, 31, 5979-5992.

Reichard, M., Janáč, M., Blažek, R., Žák, J., Alila, O. D., & Polačik, M. (2022). Patterns and drivers of Nothobranchius killifish diversity in lowland Tanzania. Ecology and Evolution, 12, e8990.

Reichwald, K., Lauber, C., Nanda, I., Kirschner, J., Hartmann, N., Schories, S., Gausmann, U., Taudien, S., Schilhabel, M. B., Szafranski, K., Glöckner, G., Schmid, M., Cellerino, A., Schartl, M., Englert, C., & Platzer, M. (2009). High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: A new vertebrate model for aging research. Genome Biology, 10, R16.

Reichwald, K., Petzold, A., Koch, P., Downie, B. R., Hartmann, N., Pietsch, S., Baumgart, M., Chalopin, D., Felder, M., Bens, M., Sahm, A., Szafranski, K., Taudien, S., Groth, M., Arisi, I., Weise, A., Bhatt, S. S., Sharma, V., Kraus, J. M., … Platzer, M. (2015). Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell, 163, 1527-1538.

Robles, F., De La Herrán, R., Ludwig, A., Ruiz Rejón, C., Ruiz Rejón, M., & Garrido-Ramos, M. A. (2004). Evolution of ancient satellite DNAs in sturgeon genomes. Gene, 338, 133-142.

Ruiz-Ruano, F. J., López-León, M. D., Cabrero, J., & Camacho, J. P. M. (2016). High-throughput analysis of the satellitome illuminates satellite DNA evolution. Scientific Reports, 6, 28333.

Šatović-Vukšić, E., & Plohl, M. (2023). Satellite DNAs-from localized to highly dispersed genome components. Genes, 14, 742.

Schartl, M., Georges, A., & Graves, J. A. M. (2023). Polygenic sex determination in vertebrates-Is there any such thing? Trends in Genetics, 39, 242-250.

Schartl, M., Schmid, M., & Nanda, I. (2016). Dynamics of vertebrate sex chromosome evolution: From equal size to giants and dwarfs. Chromosoma, 125, 553-571.

Schemberger, M. O., Bellafronte, E., Nogaroto, V., Almeida, M. C., Schühli, G. S., Artoni, R. F., Moreira-Filho, O., & Vicari, M. R. (2011). Differentiation of repetitive DNA sites and sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes). Genetica, 139, 1499-1508.

Schemberger, M. O., Nascimento, V. D., Coan, R., Ramos, É., Nogaroto, V., Ziemniczak, K., Valente, G. T., Moreira-Filho, O., Martins, C., & Vicari, M. R. (2019). DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma, 128, 547-560.

Schubert, I., & Lysák, M. A. (2011). Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics, 27, 207-216.

Sember, A., Bohlen, J., Šlechtová, V., Altmanová, M., Symonová, R., & Ráb, P. (2015). Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evolutionary Biology, 15, 251.

Sember, A., Nguyen, P., Perez, M. F., Altmanová, M., Ráb, P., & Cioffi, M. B. (2021). Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: State of the art and future challenges. Philosophical Transactions of the Royal Society B, 376, 20200098.

Serrano-Freitas, É. A., Silva, D. M. Z. A., Ruiz-Ruano, F. J., Utsunomia, R., Araya-Jaime, C., Oliveira, C., Camacho, J. P. M., & Foresti, F. (2020). Satellite DNA content of B chromosomes in the characid fish Characidium gomesi supports their origin from sex chromosomes. Molecular Genetics and Genomics, 295, 195-207.

Shao, C., Sun, S., Liu, K., Wang, J., Li, S., Liu, Q., Deagle, B. E., Seim, I., Biscontin, A., Wang, Q., Liu, X., & Zhang, Y. (2023). The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell, 186, 1279-1294.

Shen, G., & Wang, P. (2019). Environmental sex determination and sex differentiation in teleosts - How sex is established. In H. P. Wang, F. Piferrer, & S.-L. Chen (Eds.), Sex control in aquaculture (1st ed., pp. 85-115). John Wiley & Sons.

Silva, D. M. D. A., Utsunomia, R., Ruiz-Ruano, F. J., Daniel, S. N., Porto-Foresti, F., Hashimoto, D. T., Oliveira, C., Camacho, J. P. M., & Foresti, F. (2017). High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Scientific Reports, 7, 12726.

Slijepcevic, P. (1998). Telomeres and mechanisms of Robertsonian fusion. Chromosoma, 107, 136-140.

Sochorová, J., Garcia, S., Gálvez, F., Symonová, R., & Kovařík, A. (2018). Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma, 127, 141-150.

Součková, K., Jasík, M., Sovadinová, I., Sember, A., Sychrová, E., Konieczna, A., Bystrý, V., Dyková, I., Blažek, R., Lukšíková, K., Pavlica, T., & Slabý, O. (2023). From fish to cells: Establishment of continuous cell lines from embryos of annual killifish Nothobranchius furzeri and N. kadleci. Aquatic Toxicology, 259, 106517.

Stephan, W. (1986). Recombination and the evolution of satellite DNA. Genetic Research, 47, 167-174.

Stroik, S., & Hendrickson, E. A. (2020). Telomere fusions and translocations: A bridge too far? Current Opinion in Genetics & Development, 60, 85-91.

Štundlová, J., Hospodářská, M., Lukšíková, K., Voleníková, A., Pavlica, T., Altmanová, M., Richter, A., Reichard, M., Dalíková, M., Pelikánová, Š., Marta, A., Simanovsky, S. A., Hiřman, M., Jankásek, M., Dvořák, T., Bohlen, J., Ráb, P., Englert, C., Nguyen, P., & Sember, A. (2022). Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Research, 30, 309-333.

Talbert, P. B., & Henikoff, S. (2020). What makes a centromere? Experimental Cell Research, 389, 111895.

Terzibasi Tozzini, E., & Cellerino, A. (2020). Nothobranchius annual killifishes. EvoDevo, 11, 25.

Thakur, J., Packiaraj, J., & Henikoff, S. (2021). Sequence, chromatin and evolution of satellite DNA. International Journal of Molecular Sciences, 22, 4309.

Underwood, C. J., & Choi, K. (2019). Heterogeneous transposable elements as silencers, enhancers and targets of meiotic recombination. Chromosoma, 128, 279-296.

Utsunomia, R., Silva, D. M. Z. d. A., Ruiz-Ruano, F. J., Goes, C. A. G., Melo, S., Ramos, L. P., Oliveira, C., Porto-Foresti, F., Foresti, F., & Hashimoto, D. T. (2019). Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Scientific Reports, 9, 5856.

van der Merwe, P. D. W., Cotterill, F. P. D., Kandziora, M., Watters, B. R., Nagy, B., Genade, T., Flügel, T. J., Svendsen, D. S., & Bellstedt, D. U. (2021). Genomic fingerprints of palaeogeographic history: The tempo and mode of rift tectonics across tropical Africa has shaped the diversification of the killifish genus Nothobranchius (Teleostei: Cyprinodontiformes). Molecular Phylogenetics and Evolution, 158, 106988.

Vicari, M. R., Bruschi, D. P., & Cabral-de-Mello, D. C. (2022). Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. Genetics and Molecular Biology, 45(3 suppl 1), e20220071.

Vicoso, B. (2019). Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology & Evolution, 3, 1632-1641.

Voleníková, A., Lukšíková, K., Mora, P., Pavlica, T., Altmanová, M., Štundlová, J., Jankasek, M., Reichard, M., Nguyen, P., & Sember, A. (2023). Fast centromeric repeat turnover provides a glimpse into satellite DNA evolution in Nothobranchius annual killifishes. bioRxiv2023.03.23.534043. https://doi.org/10.1101/2023.03.23.534043

Völker, M., & Ráb, P. (2015). Direct chromosome preparation from regenerating fin tissue. In C. Ozouf-Costaz, E. Pisano, F. Foresti, & L. F. de Almeida-Toledo (Eds.), Fish cytogenetic techniques: Ray-fin fishes and chondrichthyans (pp. 37-41). CRC Press Inc, Endfield. https://doi.org/10.1201/b18534-4

Vondrak, T., Ávila Robledillo, L., Novák, P., Koblížková, A., Neumann, P., & Macas, J. (2020). Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. The Plant Journal, 101, 484-500.

Vrtílek, M., Žák, J., Pšenička, M., & Reichard, M. (2018). Extremely rapid maturation of a wild African annual fish. Current Biology, 28, R822-R824.

Watters, B. R., Nagy, B., van der Merwe, P. D. W., Cotterill, F. P. D., & Bellstedt, D. U. (2020). Redescription of the seasonal killifish species Nothobranchius ocellatus and description of a related new species Nothobranchius matanduensis, from eastern Tanzania (Teleostei: Nothobranchiidae). Ichthyological Exploration of Freshwaters, 30, 151-178.

Watters, B. R., Cooper, B. J., & Wildekamp, R. H. (2008). Description of Nothobranchius cardinalis spec. Nov. (Cyprinodontiformes: Aplocheilidae), an annual fish from the Mbwemkuru River basin, Tanzania. Journal of the American Killifish Association, 40, 129-145.

Wildekamp, R. H. (1996). A world of killies. Atlas of the oviparous cyprinodontiform fishes of the world (Vol. III) (p. 330). American Killifish Association.

Wildekamp, R. H. (2004). A world of killies-Atlas of the oviparous cyprinodontiform fishes of the world (Vol. IV) (p. 398). The American Killifish Association.

Willemsen, D., Cui, R., Reichard, M., & Valenzano, D. R. (2020). Intra-species differences in population size shape life history and genome evolution. eLife, 9, e55794.

Winter, D. J., Ganley, A. R. D., Young, C. A., Liachko, I., Schardl, C. L., Dupont, P. Y., Berry, D., Ram, A., Scott, B., & Cox, M. C. (2018). Repeat elements organize 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae. PLoS Genetics, 14, e1007467.

Yano, C. F., Bertollo, L. A. C., Ezaz, T., Trifonov, V., Sember, A., Liehr, T., & Cioffi, M. B. (2017). Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity, 118, 276-283.

Yano, C. F., Bertollo, L. A. C., Liehr, T., Troy, W. P., & Cioffi, M. B. (2016). W chromosome dynamics in Triportheus species (Characiformes, Triportheidae): An ongoing process narrated by repetitive sequences. Journal of Heredity, 107, 342-348.

Yano, C. F., Sember, A., Kretschmer, R., Bertollo, L. A. C., Ezaz, T., Hatanaka, T., Liehr, T., Ráb, P., Al-Rikabi, A., Viana, P. F., Feldberg, E., de Oliveira, E. A., Toma, G. A., & Cioffi, M. B. (2021). Against the mainstream: Exceptional evolutionary stability of ZW sex chromosomes across the fish families Triportheidae and Gasteropelecidae (Teleostei: Characiformes). Chromosome Research, 29, 391-416.

Zeljko, V. T., Pavlek, M., Meštrović, N., & Plohl, M. (2020). Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements. Scientific Reports, 10, 15107.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fast satellite DNA evolution in Nothobranchius annual killifishes

. 2023 Nov 21 ; 31 (4) : 33. [epub] 20231121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...