chromosome polymorphism
Dotaz
Zobrazit nápovědu
Juxtaglomerular cell tumor (JxGCT) is a rare type of renal neoplasm demonstrating morphologic overlap with some mesenchymal tumors such as glomus tumor (GT) and solitary fibrous tumor (SFT). Its oncogenic drivers remain elusive, and only a few cases have been analyzed with modern molecular techniques. In prior studies, loss of chromosomes 9 and 11 appeared to be recurrent. Recently, whole-genome analysis identified alterations involving genes of MAPK-RAS pathway in a subset, but no major pathogenic alterations have been discovered in prior whole transcriptome analyses. Considering the limited understanding of the molecular features of JxGCTs, we sought to assess a collaborative series with a multiomic approach to further define the molecular characteristics of this entity. Fifteen tumors morphologically compatible with JxGCTs were evaluated using immunohistochemistry for renin, single-nucleotide polymorphism array (SNP), low-pass whole-genome sequencing, and RNA sequencing (fusion assay). In addition, methylation analysis comparing JxGCT, GT, and SFT was performed. All cases tested with renin (n=11) showed positive staining. Multiple chromosomal abnormalities were identified in all cases analyzed (n=8), with gains of chromosomes 1p, 10, 17, and 19 and losses of chromosomes 9, 11, and 21 being recurrent. A pathogenic HRAS mutation was identified in one case as part of the SNP array analysis. Thirteen tumors were analyzed by RNA sequencing, with 2 revealing in-frame gene fusions: TFG::GPR128 (interpreted as stochastic) and NAB2::STAT6 . The latter, originally diagnosed as JxGCT, was reclassified as SFT and excluded from the series. No fusions were detected in the remaining 11 cases; of note, no case harbored NOTCH fusions previously described in GT. Genomic methylation analysis showed that JxGCT, GT, and SFT form separate clusters, confirming that JxGCT represents a distinct entity (ie, different from GT). The results of our study show that JxGCTs are a distinct tumor type with a recurrent pattern of chromosomal imbalances that may play a role in oncogenesis, with MAPK-RAS pathway activation being likely a driver in a relatively small subset.
- MeSH
- dospělí MeSH
- epigeneze genetická MeSH
- epigenomika MeSH
- fúze genů * MeSH
- genetická predispozice k nemoci MeSH
- genomika MeSH
- imunohistochemie MeSH
- jednonukleotidový polymorfismus MeSH
- juxtaglomerulární aparát patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA MeSH
- nádorové biomarkery * genetika MeSH
- nádory ledvin * genetika patologie chemie MeSH
- sekvenování celého genomu MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
Due to methodological reasons, the X-chromosome has not been featured in the major genome-wide association studies on Alzheimer's Disease (AD). To address this and better characterize the genetic landscape of AD, we performed an in-depth X-Chromosome-Wide Association Study (XWAS) in 115,841 AD cases or AD proxy cases, including 52,214 clinically-diagnosed AD cases, and 613,671 controls. We considered three approaches to account for the different X-chromosome inactivation (XCI) states in females, i.e. random XCI, skewed XCI, and escape XCI. We did not detect any genome-wide significant signals (P ≤ 5 × 10-8) but identified seven X-chromosome-wide significant loci (P ≤ 1.6 × 10-6). The index variants were common for the Xp22.32, FRMPD4, DMD and Xq25 loci, and rare for the WNK3, PJA1, and DACH2 loci. Overall, this well-powered XWAS found no genetic risk factors for AD on the non-pseudoautosomal region of the X-chromosome, but it identified suggestive signals warranting further investigations.
- MeSH
- Alzheimerova nemoc * genetika MeSH
- celogenomová asociační studie metody MeSH
- genetická predispozice k nemoci genetika MeSH
- inaktivace chromozomu X genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- lidské chromozomy X * genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Pleiotropic variants (i.e. genetic polymorphisms influencing more than one phenotype) are often associated with cancer risk. A scan of pleiotropic variants was successfully conducted 10 years ago in relation to pancreatic ductal adenocarcinoma susceptibility. However, in the last decade, genetic association studies performed on several human traits have greatly increased the number of known pleiotropic variants. Based on the hypothesis that variants already associated with a least one trait have a higher probability of association with other traits, 61 052 variants reported to be associated by at least one genome-wide association study with at least one human trait were tested in the present study consisting of two phases (discovery and validation), comprising a total of 16 055 pancreatic ductal adenocarcinoma (PDAC) cases and 212 149 controls. The meta-analysis of the two phases showed two loci (10q21.1-rs4948550 (P = 6.52 × 10-5) and 7q36.3-rs288762 (P = 3.03 × 10-5) potentially associated with PDAC risk. 10q21.1-rs4948550 shows a high degree of pleiotropy and it is also associated with colorectal cancer risk while 7q36.3-rs288762 is situated 28,558 base pairs upstream of the Sonic Hedgehog (SHH) gene, which is involved in the cell-differentiation process and PDAC etiopathogenesis. In conclusion, none of the single nucleotide polymorphisms (SNPs) showed a formally statistically significant association after correction for multiple testing. However, given their pleiotropic nature and association with various human traits including colorectal cancer, the two SNPs showing the best associations with PDAC risk merit further investigation through fine mapping and ad hoc functional studies.
- MeSH
- celogenomová asociační studie * MeSH
- duktální karcinom slinivky břišní * genetika MeSH
- genetická pleiotropie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- lidské chromozomy, pár 10 genetika MeSH
- lidské chromozomy, pár 7 genetika MeSH
- nádory slinivky břišní * genetika MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently characterized by a 3p deletion and the inactivation of the von Hippel-Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehensive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.
- MeSH
- DNA vazebné proteiny MeSH
- epigeneze genetická * genetika MeSH
- epigenom * genetika MeSH
- karcinom z renálních buněk * genetika patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování chromozomů metody MeSH
- metylace DNA * genetika MeSH
- nádorový supresorový protein VHL genetika MeSH
- nádory ledvin * genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- transkripční faktory MeSH
- variabilita počtu kopií segmentů DNA * genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Cardiac allograft vasculopathy (CAV) is an accelerated form of coronary artery disease (CAD) that is characterized by concentric fibrous intimal hyperplasia along the length of coronary vessels, and is recognized as long-term complication after heart transplantation. The chromosomal loci 9p21, 6q25.1, and 2q36.3, represented by their respective leading variants rs10757274, rs6922269 and rs2943634, have been linked with a history of CAD by genome-wide association studies. We aimed to investigate the associations of genetic variants at the loci 9p21, 6q25.1, and 2q36.3 with CAV as genetic risk factors for early prediction. METHODS: Genomic DNA was extracted from paired aortic samples of 727 heart recipients (average age 50.8 ± 12.2 years; 21.3% women) and corresponding donors (average age 39.7 ± 12.0 years; 26.1% women). The variants within the loci 9p21, 6q25.1, and 2q36.3 were genotyped using PCR-RFLP. RESULTS: The recipients' variants of 9p21 (OR 1.97; 95% CI, 1.21-3.19 for GG vs. +A comparison, p = 0.0056) and 2q36.3 (OR 2.46; 95% CI, 1.12-6.17 for +C vs. AA comparison, p = 0.0186) were associated with higher incidence of CAV during the first year following heart transplantation. No such association was found for donor genotypes. CONCLUSIONS: Our data suggest that variants at the locus 9p21 (rs10757274) and 2q36.3 (rs2943634) are associated with early CAV development.
- MeSH
- alografty * MeSH
- celogenomová asociační studie MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 2 genetika MeSH
- lidské chromozomy, pár 6 genetika MeSH
- lidské chromozomy, pár 9 genetika MeSH
- nemoci koronárních tepen * genetika patologie etiologie MeSH
- transplantace srdce * škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes. Here we present a new mapping modality, Repair-Assisted Damage Detection - Optical Genome Mapping (RADD-OGM), a method for single-molecule level mapping of DNA damage on a genome-wide scale. Leveraging ultra-long reads to assemble the complex structure of a sarcoma cell-line genome, we mapped the genomic distribution of oxidative DNA damage, identifying regions more susceptible to DNA oxidation. We also investigated DNA repair by allowing cells to repair chemically induced DNA damage, pinpointing locations of concentrated repair activity, and highlighting variations in repair efficiency. Our results showcase the potential of the method for toxicogenomic studies, mapping the effect of DNA damaging agents such as drugs and radiation, as well as following specific DNA repair pathways by selective induction of DNA damage. The facile integration with optical genome mapping enables performing such analyses even in highly rearranged genomes such as those common in many cancers, a challenging task for sequencing-based approaches.
- MeSH
- bromičnany toxicita MeSH
- lidé MeSH
- mapování chromozomů * přístrojové vybavení metody MeSH
- mikrofluidní analytické techniky * přístrojové vybavení metody MeSH
- nádorové buněčné linie MeSH
- nanotechnologie * přístrojové vybavení metody MeSH
- oprava DNA genetika MeSH
- oxidační stres účinky léků genetika MeSH
- poškození DNA * genetika MeSH
- regulace genové exprese MeSH
- stanovení celkové genové exprese MeSH
- toxikogenetika * přístrojové vybavení metody MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zobrazení jednotlivé molekuly * přístrojové vybavení metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
... Contents -- 1 Historical Introduction 1 -- 2 Normal Chromosomes 4 -- 2.1 Introduction 4 -- 2.2 Chromosome ... ... -- 5.5.9.2 Insertions between Two Chromosomes -- 5.5.9.3 Complex Insertions -- 5.5.16.1 Ring Chromosomes ... ... Derived from One Chromosome -- 5.5.16.2 Ring Chromosomes Derived from More than One Chromosome -- 5.5.17 ... ... Quadruplications -- Recombinant Chromosomes -- Ring Chromosomes -- 5.5.18.2 Whole-Arm Translocations ... ... Chromosomes Normal Signal Pattern — -- 7.3.4.4.4 Two or More Chromosomes Abnormal Signal Pattern -- ...
Genetics
viii, 224 stran : 16 grafických znázornění, ilustrace, 12 tabulek
- Konspekt
- Obecná genetika. Obecná cytogenetika. Evoluce
- NLK Obory
- cytologie, klinická cytologie
- genetika, lékařská genetika
- NLK Publikační typ
- kolektivní monografie
Glioblastoma is the commonest primary malignant brain tumor, with a very poor prognosis and short overall survival. It is characterized by its high intra- and intertumoral heterogeneity, in terms of both the level of single-nucleotide variants, copy number alterations, and aneuploidy. Therefore, routine diagnosis can be challenging in some cases. We present a complicated case of glioblastoma, which was characterized with five cytogenomic methods: interphase fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, comparative genomic hybridization array and single-nucleotide polymorphism, targeted gene panel, and whole-genome sequencing. These cytogenomic methods revealed classical findings associated with glioblastoma, such as a lack of IDH and TERT mutations, gain of chromosome 7, and loss of chromosome 10. At least three pathological clones were identified, including one with whole-genome duplication, and one with loss of 1p and suspected loss of 19q. Deletion and mutation of the TP53 gene were detected with numerous breakends on 17p and 20q. Based on these findings, we recommend a combined approach to the diagnosis of glioblastoma involving the detection of copy number alterations, mutations, and aneuploidy. The choice of the best combination of methods is based on cost, time required, staff expertise, and laboratory equipment. This integrated strategy could contribute directly to tangible improvements in the diagnosis, prognosis, and prediction of the therapeutic responses of patients with brain tumors.
- MeSH
- glioblastom * genetika patologie diagnóza MeSH
- hybridizace in situ fluorescenční metody MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery genetika MeSH
- nádory mozku * genetika patologie diagnóza MeSH
- prognóza MeSH
- srovnávací genomová hybridizace metody MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
PURPOSE: The field cancerization concept indicates the presence of pre-cancerous changes in clinically normal tissue surrounding the tumor. In squamous cell carcinoma of the oral tongue (SCCOT) which is infrequently linked to human papillomavirus infection, we have previously reported that clinically normal tongue contralateral to tumor (NTCT) is molecularly abnormal. Here, combining our transcriptomic and genomic data, we aimed to investigate the contribution of molecular changes in NTCT to cancer development. METHODS: Microarray gene expression data of 14 healthy controls, 23 NTCT and 29 SCCOT samples were investigated to characterize transcriptional profiles in NTCT. Whole exome sequencing and RNA-sequencing data of paired NTCT and tumor samples from 15 SCCOT patients were used to study correlation between copy number variation and differential gene expression. RESULTS: Using supervised multivariate partial least squares discriminant analysis, a total of 61 mRNAs that distinguish NTCT from healthy tongue were selected. Functional enrichment analysis of the 22 upregulated genes showed increased "positive regulation of nitrogen compound metabolic process" in NTCT. All 12 genes involved in this process have roles in apoptosis (anti- and/or pro-apoptotic). Compared to healthy controls, Zinc Finger Protein 395 (ZNF395), a pro-apoptotic tumor suppressor located on chromosome 8p, was the only gene showing increased mRNA level in NTCT whereas decreased in SCCOT. Given the frequent loss of chromosome 8p in SCCOT, the impact of ZNF395 copy number variation on gene expression was further examined, revealing a positive correlation between copy number and mRNA level (correlation coefficient = 0.572, p < 0.001). CONCLUSION: NTCT is susceptible to malignant transformation, where tissue homeostasis is maintained at least partly through regulation of apoptosis. Loss of the pro-apoptotic gene ZNF395 could thus initiate cancer development.
- MeSH
- apoptóza * genetika MeSH
- dlaždicobuněčné karcinomy hlavy a krku * genetika patologie MeSH
- dospělí MeSH
- homeostáza genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory jazyka * genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- spinocelulární karcinom genetika patologie MeSH
- transkriptom MeSH
- upregulace * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Persons living in industrial environments are exposed to levels of air pollution that can affect their health and fertility. The Czech capital city, Prague, and the Ostrava industrial agglomeration differ in their major sources of air pollution. In Prague, heavy traffic produces high levels of nitrogen oxides throughout the year. In the Ostrava region, an iron industry and local heating are sources of particulate matter (PM) and benzo[a]pyrene (B[a]P), especially in the winter. We evaluated the effects of air pollution on human sperm mitochondrial DNA (mtDNA). Using real-time PCR, we analysed sperm mtDNA copy number and deletion rate in Prague city policemen in two seasons (spring and autumn) and compared the results with those from Ostrava. In Prague, the sperm mtDNA deletion rate was significantly higher in autumn than in spring, which is the opposite of the results from Ostrava. The sperm mtDNA copy number did not show any seasonal differences in either of the cities; it was correlated negatively with sperm concentration, motility, and viability, and with sperm chromatin integrity (assessed with the Sperm Chromatin Structure Assay). The comparison between the two cities showed that the sperm mtDNA deletion rate in spring and the sperm mtDNA copy number in autumn were significantly lower in Prague vs. Ostrava. Our study supports the hypothesis that sperm mtDNA deletion rate is affected by the composition of air pollution. Sperm mtDNA abundance is closely associated with chromatin damage and standard semen characteristics.
- MeSH
- dospělí MeSH
- látky znečišťující vzduch toxicita škodlivé účinky MeSH
- lidé MeSH
- mitochondriální DNA * genetika MeSH
- motilita spermií účinky léků MeSH
- pevné částice toxicita škodlivé účinky MeSH
- policie MeSH
- roční období MeSH
- spermie * účinky léků MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- znečištění ovzduší * škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH