-
Je něco špatně v tomto záznamu ?
Single-molecule toxicogenomics: Optical genome mapping of DNA-damage in nanochannel arrays
T. Detinis Zur, S. Margalit, J. Jeffet, A. Grunwald, S. Fishman, Z. Tulpová, Y. Michaeli, J. Deek, Y. Ebenstein
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- bromičnany toxicita MeSH
- lidé MeSH
- mapování chromozomů * přístrojové vybavení metody MeSH
- mikrofluidní analytické techniky * přístrojové vybavení metody MeSH
- nádorové buněčné linie MeSH
- nanotechnologie * přístrojové vybavení metody MeSH
- oprava DNA genetika MeSH
- oxidační stres účinky léků genetika MeSH
- poškození DNA * genetika MeSH
- regulace genové exprese MeSH
- stanovení celkové genové exprese MeSH
- toxikogenetika * přístrojové vybavení metody MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zobrazení jednotlivé molekuly * přístrojové vybavení metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes. Here we present a new mapping modality, Repair-Assisted Damage Detection - Optical Genome Mapping (RADD-OGM), a method for single-molecule level mapping of DNA damage on a genome-wide scale. Leveraging ultra-long reads to assemble the complex structure of a sarcoma cell-line genome, we mapped the genomic distribution of oxidative DNA damage, identifying regions more susceptible to DNA oxidation. We also investigated DNA repair by allowing cells to repair chemically induced DNA damage, pinpointing locations of concentrated repair activity, and highlighting variations in repair efficiency. Our results showcase the potential of the method for toxicogenomic studies, mapping the effect of DNA damaging agents such as drugs and radiation, as well as following specific DNA repair pathways by selective induction of DNA damage. The facile integration with optical genome mapping enables performing such analyses even in highly rearranged genomes such as those common in many cancers, a challenging task for sequencing-based approaches.
Edmond J Safra Center for Bioinformatics Tel Aviv University Tel Aviv 6997801 Israel
Institute of Experimental Botany of the Czech Academy of Sciences Olomouc Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010032
- 003
- CZ-PrNML
- 005
- 20250429134920.0
- 007
- ta
- 008
- 250415e20250110ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.dnarep.2025.103808 $2 doi
- 035 __
- $a (PubMed)39813882
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Detinis Zur, Tahir $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- 245 10
- $a Single-molecule toxicogenomics: Optical genome mapping of DNA-damage in nanochannel arrays / $c T. Detinis Zur, S. Margalit, J. Jeffet, A. Grunwald, S. Fishman, Z. Tulpová, Y. Michaeli, J. Deek, Y. Ebenstein
- 520 9_
- $a Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes. Here we present a new mapping modality, Repair-Assisted Damage Detection - Optical Genome Mapping (RADD-OGM), a method for single-molecule level mapping of DNA damage on a genome-wide scale. Leveraging ultra-long reads to assemble the complex structure of a sarcoma cell-line genome, we mapped the genomic distribution of oxidative DNA damage, identifying regions more susceptible to DNA oxidation. We also investigated DNA repair by allowing cells to repair chemically induced DNA damage, pinpointing locations of concentrated repair activity, and highlighting variations in repair efficiency. Our results showcase the potential of the method for toxicogenomic studies, mapping the effect of DNA damaging agents such as drugs and radiation, as well as following specific DNA repair pathways by selective induction of DNA damage. The facile integration with optical genome mapping enables performing such analyses even in highly rearranged genomes such as those common in many cancers, a challenging task for sequencing-based approaches.
- 650 12
- $a toxikogenetika $x přístrojové vybavení $x metody $7 D043922
- 650 12
- $a zobrazení jednotlivé molekuly $x přístrojové vybavení $x metody $7 D000072760
- 650 12
- $a mapování chromozomů $x přístrojové vybavení $x metody $7 D002874
- 650 12
- $a poškození DNA $x genetika $7 D004249
- 650 12
- $a mikrofluidní analytické techniky $x přístrojové vybavení $x metody $7 D046210
- 650 12
- $a nanotechnologie $x přístrojové vybavení $x metody $7 D036103
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a oxidační stres $x účinky léků $x genetika $7 D018384
- 650 _2
- $a oprava DNA $x genetika $7 D004260
- 650 _2
- $a regulace genové exprese $7 D005786
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a variabilita počtu kopií segmentů DNA $7 D056915
- 650 _2
- $a bromičnany $x toxicita $7 D001959
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Margalit, Sapir $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- 700 1_
- $a Jeffet, Jonathan $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- 700 1_
- $a Grunwald, Assaf $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- 700 1_
- $a Fishman, Sivan $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- 700 1_
- $a Tulpová, Zuzana $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
- 700 1_
- $a Michaeli, Yael $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- 700 1_
- $a Deek, Jasline $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- 700 1_
- $a Ebenstein, Yuval $u School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address: uv@tauex.tau.ac.il
- 773 0_
- $w MED00006619 $t DNA repair $x 1568-7856 $g Roč. 146 (20250110), s. 103808
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39813882 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429134915 $b ABA008
- 999 __
- $a ok $b bmc $g 2311415 $s 1247113
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 146 $c - $d 103808 $e 20250110 $i 1568-7856 $m DNA repair $n DNA Repair (Amst) $x MED00006619
- LZP __
- $a Pubmed-20250415