Postoperative Staphylococcus aureus Infections in Patients With and Without Preoperative Colonization

. 2023 Oct 02 ; 6 (10) : e2339793. [epub] 20231002

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu multicentrická studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37906196

IMPORTANCE: Staphylococcus aureus surgical site infections (SSIs) and bloodstream infections (BSIs) are important complications of surgical procedures for which prevention remains suboptimal. Contemporary data on the incidence of and etiologic factors for these infections are needed to support the development of improved preventive strategies. OBJECTIVES: To assess the occurrence of postoperative S aureus SSIs and BSIs and quantify its association with patient-related and contextual factors. DESIGN, SETTING, AND PARTICIPANTS: This multicenter cohort study assessed surgical patients at 33 hospitals in 10 European countries who were recruited between December 16, 2016, and September 30, 2019 (follow-up through December 30, 2019). Enrolled patients were actively followed up for up to 90 days after surgery to assess the occurrence of S aureus SSIs and BSIs. Data analysis was performed between November 20, 2020, and April 21, 2022. All patients were 18 years or older and had undergone 11 different types of surgical procedures. They were screened for S aureus colonization in the nose, throat, and perineum within 30 days before surgery (source population). Both S aureus carriers and noncarriers were subsequently enrolled in a 2:1 ratio. EXPOSURE: Preoperative S aureus colonization. MAIN OUTCOMES AND MEASURES: The main outcome was cumulative incidence of S aureus SSIs and BSIs estimated for the source population, using weighted incidence calculation. The independent association of candidate variables was estimated using multivariable Cox proportional hazards regression models. RESULTS: In total, 5004 patients (median [IQR] age, 66 [56-72] years; 2510 [50.2%] female) were enrolled in the study cohort; 3369 (67.3%) were S aureus carriers. One hundred patients developed S aureus SSIs or BSIs within 90 days after surgery. The weighted cumulative incidence of S aureus SSIs or BSIs was 2.55% (95% CI, 2.05%-3.12%) for carriers and 0.52% (95% CI, 0.22%-0.91%) for noncarriers. Preoperative S aureus colonization (adjusted hazard ratio [AHR], 4.38; 95% CI, 2.19-8.76), having nonremovable implants (AHR, 2.00; 95% CI, 1.15-3.49), undergoing mastectomy (AHR, 5.13; 95% CI, 1.87-14.08) or neurosurgery (AHR, 2.47; 95% CI, 1.09-5.61) (compared with orthopedic surgery), and body mass index (AHR, 1.05; 95% CI, 1.01-1.08 per unit increase) were independently associated with S aureus SSIs and BSIs. CONCLUSIONS AND RELEVANCE: In this cohort study of surgical patients, S aureus carriage was associated with an increased risk of developing S aureus SSIs and BSIs. Both modifiable and nonmodifiable etiologic factors were associated with this risk and should be addressed in those at increased S aureus SSI and BSI risk.

AstraZeneca Plc Gaithersburg Maryland

AZ Sint Lucas Ziekenhuis Gent Campus Volkskliniek Gent Belgium

Azienda Ospedaliera Universitaria Ospedali Riuniti Ancona Italy

Central Military University Emergency Hospital Dr Carol Davila Bucharest Romania

Centre Hospitalier Universitaire de Limoges Limoges France

CIBERINFEC Instituto de Salud Carlos 3 Madrid Spain

Clinical Centre of Kragujevac Kragujevac Serbia

Clinical Centre of Serbia Belgrade Serbia

Department of Medical Microbiology University Medical Center Utrecht Utrecht University Utrecht the Netherlands

Department of Surgery Amphia Hospital Breda North Brabant the Netherlands

Department of Surgery Wilhelmina Ziekenhuis Assen Assen Drenthe the Netherlands

Elias Emergency University Hospital Bucharest Romania

Heilig Hart Hospital Lier Belgium

Hospital Brescia University of Brescia Brescia Italy

Hospital del Mar IMIM UPF Barcelona Spain

Hospital Universitario de Asturias Asturia Spain

Hospital Universitario de Bellvitge Barcelona Spain

Hospital Universitario Reina Sofía IMIBIC Cordoba Spain

Hospital Universitario Virgen Macarena Seville Spain

Infection Control Programme and World Health Organization Collaborating Center Geneva University Hospitals and Faculty of Medicine Geneva Switzerland

Institute for Orthopedic Surgery Banjica Belgrade Serbia

Institute of Medical Biometry and Statistics Faculty of Medicine and Medical Center University of Freiburg Freiburg Germany

Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca Romania

Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht University Utrecht the Netherlands

Laboratory of Medical Microbiology Vaccine and Infectious Disease Institute University of Antwerp Antwerp Belgium

Microbial Sciences R and D BioPharmaceuticals AstraZeneca Plc Gaithersburg Maryland

Motol University Hospital Prague Czechia

North Estonia Medical Centre Tallinn Estonia

North Manchester General Hospital Pennine Acute Hospitals NHS Trust Manchester England United Kingdom

ow with Gilead Sciences Inc Foster City California

Prof Dr C C Iliescu Institute for Emergency Cardiovascular Diseases Bucharest Romania

Queen Elizabeth Hospital Birmingham University Hospitals Birmingham National Health Service Foundation Trust Birmingham England United Kingdom

South Tees Hospitals NHS Foundation Trust Middlesbrough England United Kingdom

St Anne's University Hospital Brno Czechia

Tartu University Hospital Tartu Estonia

Timisoara County Hospital Timisoara Romania

University Hospital Hradec Králové Hradec Králové Czechia

University Hospital Ostrava Ostrava Poruba Czechia

University Hospitals of Derby and Burton NHS Foundation Trust Derby England United Kingdom

University Hospitals Sussex NHS Foundation Trust Brighton United Kingdom

University Medical Center Utrecht Utrecht University Utrecht the Netherlands

UOC Anestesia e Rianimazione Ospedale Infermi Rimini Italy

York and Scarborough Teaching Hospitals NHS Foundation Trust York England United Kingdom

Erratum v

PubMed

Zobrazit více v PubMed

O’Brien WJ, Gupta K, Itani KMF. Association of postoperative infection with risk of long-term infection and mortality. JAMA Surg. 2020;155(1):61-68. doi:10.1001/jamasurg.2019.4539 PubMed DOI PMC

Gottlieb GS, Fowler VG Jr, Kong LK, et al. . Staphylococcus aureus bacteremia in the surgical patient: a prospective analysis of 73 postoperative patients who developed Staphylococcus aureus bacteremia at a tertiary care facility. J Am Coll Surg. 2000;190(1):50-57. doi:10.1016/S1072-7515(99)00211-2 PubMed DOI

Badia JM, Casey AL, Petrosillo N, Hudson PM, Mitchell SA, Crosby C. Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J Hosp Infect. 2017;96(1):1-15. doi:10.1016/j.jhin.2017.03.004 PubMed DOI

Klevens RM, Edwards JR, Richards CL Jr, et al. . Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122(2):160-166. doi:10.1177/003335490712200205 PubMed DOI PMC

Marimuthu K, Eisenring MC, Harbarth S, Troillet N. Epidemiology of Staphylococcus aureus surgical site infections. Surg Infect (Larchmt). 2016;17(2):229-235. doi:10.1089/sur.2015.055 PubMed DOI

Haque M, Sartelli M, McKimm J, Abu Bakar M. Health care-associated infections: an overview. Infect Drug Resist. 2018;11:2321-2333. doi:10.2147/IDR.S177247 PubMed DOI PMC

European Centre for Disease Prevention and Control . Healthcare-associated infections: surgical site infections. In: Annual Epidemiological Report for 2017. ECDC; 2019.

Lee AS, de Lencastre H, Garau J, et al. . Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033. doi:10.1038/nrdp.2018.33 PubMed DOI

Advanced understanding of staphylococcus aureus infections in Europe—surgical site infections (ASPIRE-SSI). ClinicalTrials.gov identifier: NCT02935244. Updated May 3, 2021. Accessed September 20, 2022. https://classic.clinicaltrials.gov/ct2/show/NCT02935244

Statistics Division United Nations . Methodology: standard country or area codes for statistical use (M49). Accessed May 2, 2023. https://unstats.un.org/unsd/methodology/m49/#fn1

Troeman DPR, Weber S, Hazard D, et al. . Designing the ASPIRE-SSI study: a multicenter, observational, prospective cohort study to assess the incidence and risk factors of surgical site and bloodstream infections caused by Staphylococcus aureus in Europe. medRxiv. Preprint posted online July 10, 2020. doi:10.1101/2020.07.08.20148791 DOI

World Medical Association . World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053 PubMed DOI

Wet medisch-wetenschappelijk onderzoek met mensen. Published February 26, 1998. Accessed May 2, 2023. https://wetten.overheid.nl/BWBR0009408/2022-07-01

von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative . Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806-808. doi:10.1136/bmj.39335.541782.AD PubMed DOI PMC

National Healthcare Safety Network, Centers for Disease Prevention and Control . Surgical site infection (SSI) event. Published January 2023. Accessed May 2, 2023. https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf

National Healthcare Safety Network, Centers of Disease Control and Prevention . Bloodstream infection event (central line-associated bloodstream infection and non-central line associated bloodstream infection). Published January 2023. Accessed May 2, 2023. https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf

Gaillot O, Wetsch M, Fortineau N, Berche P. Evaluation of CHROMagar Staph. aureus, a new chromogenic medium, for isolation and presumptive identification of Staphylococcus aureus from human clinical specimens. J Clin Microbiol. 2000;38(4):1587-1591. doi:10.1128/JCM.38.4.1587-1591.2000 PubMed DOI PMC

Xavier BB, Mysara M, Bolzan M, et al. . BacPipe: a rapid, user-friendly whole-genome sequencing pipeline for clinical diagnostic bacteriology. iScience. 2020;23(1):100769. doi:10.1016/j.isci.2019.100769 PubMed DOI PMC

Lee ES, Forthofer RR. Analyzing Complex Survey Data. Vol 71. 2nd ed. SAGE Publications; 2005.

Rubin DB. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons Inc; 2004.

Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496-509. doi:10.1080/01621459.1999.10474144 DOI

R Core Team . R: a language and environment for statistical computing [computer program]. R Foundation for Statistical Computing; 2022.

Paling FP, Hazard D, Bonten MJM, et al. ; ASPIRE-ICU Study Team . Association of Staphylococcus aureus colonization and pneumonia in the intensive care unit. JAMA Netw Open. 2020;3(9):e2012741. doi:10.1001/jamanetworkopen.2020.12741 PubMed DOI PMC

Albrecht VS, Limbago BM, Moran GJ, et al. ; EMERGEncy ID NET Study Group . Staphylococcus aureus colonization and strain type at various body sites among patients with a closed abscess and uninfected controls at U.S. emergency departments. J Clin Microbiol. 2015;53(11):3478-3484. doi:10.1128/JCM.01371-15 PubMed DOI PMC

von Eiff C, Becker K, Machka K, Stammer H, Peters G; Study Group . Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med. 2001;344(1):11-16. doi:10.1056/NEJM200101043440102 PubMed DOI

Lee AS, Cooper BS, Malhotra-Kumar S, et al. ; MOSAR WP4 Study Group . Comparison of strategies to reduce methicillin-resistant Staphylococcus aureus rates in surgical patients: a controlled multicentre intervention trial. BMJ Open. 2013;3(9):e003126. doi:10.1136/bmjopen-2013-003126 PubMed DOI PMC

European Centre for Disease Prevention and Control . Antimicrobial Resistance Surveillance in Europe 2014: Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-net). ECDC; 2015.

van Cleef BA, Monnet DL, Voss A, et al. . Livestock-associated methicillin-resistant Staphylococcus aureus in humans, Europe. Emerg Infect Dis. 2011;17(3):502-505. doi:10.3201/eid1703.101036 PubMed DOI PMC

Lu H, Zhao L, Si Y, et al. . The surge of hypervirulent ST398 MRSA lineage with higher biofilm-forming ability is a critical threat to clinics. Front Microbiol. 2021;12:636788. doi:10.3389/fmicb.2021.636788 PubMed DOI PMC

Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341(15):1097-1105. doi:MJBA-411501 doi:10.1056/NEJM199910073411501 PubMed DOI

Dotan I, Shochat T, Shimon I, Akirov A. The association between BMI and mortality in surgical patients. World J Surg. 2021;45(5):1390-1399. doi:10.1007/s00268-021-05961-4 PubMed DOI

Mariscalco G, Wozniak MJ, Dawson AG, et al. . Body mass index and mortality among adults undergoing cardiac surgery: a nationwide study with a systematic review and meta-analysis. Circulation. 2017;135(9):850-863. doi:10.1161/CIRCULATIONAHA.116.022840 PubMed DOI

Nafiu OO, Kheterpal S, Moulding R, et al. . The association of body mass index to postoperative outcomes in elderly vascular surgery patients: a reverse J-curve phenomenon. Anesth Analg. 2011;112(1):23-29. doi:10.1213/ANE.0b013e3181fcc51a PubMed DOI

Thomas EJ, Goldman L, Mangione CM, et al. . Body mass index as a correlate of postoperative complications and resource utilization. Am J Med. 1997;102(3):277-283. doi:10.1016/S0002-9343(96)00451-2 PubMed DOI

Waisbren E, Rosen H, Bader AM, Lipsitz SR, Rogers SO Jr, Eriksson E. Percent body fat and prediction of surgical site infection. J Am Coll Surg. 2010;210(4):381-389. doi:10.1016/j.jamcollsurg.2010.01.004 PubMed DOI

Fu CY, Bajani F, Bokhari M, et al. . Obesity is associated with worse outcomes among abdominal trauma patients undergoing laparotomy: a propensity-matched nationwide cohort study. World J Surg. 2020;44(3):755-763. doi:10.1007/s00268-019-05268-5 PubMed DOI PMC

Thelwall S, Harrington P, Sheridan E, Lamagni T. Impact of obesity on the risk of wound infection following surgery: results from a nationwide prospective multicentre cohort study in England. Clin Microbiol Infect. 2015;21(11):1008.e1-1008.e8. doi:10.1016/j.cmi.2015.07.003 PubMed DOI

Galyfos G, Geropapas GI, Kerasidis S, Sianou A, Sigala F, Filis K. The effect of body mass index on major outcomes after vascular surgery. J Vasc Surg. 2017;65(4):1193-1207. doi:10.1016/j.jvs.2016.09.032 PubMed DOI

Sommerstein R, Atkinson A, Kuster SP, et al. ; Swissnoso Network . Association between antimicrobial prophylaxis with double-dose cefuroxime and surgical site infections in patients weighing 80 kg or more. JAMA Netw Open. 2021;4(12):e2138926. doi:10.1001/jamanetworkopen.2021.38926 PubMed DOI PMC

Thorn L, Lamagni T, Harrington P, Wloch C, Hope R, Brown C. Surveillance of surgical site infections in NHS hospitals in England April 2020 to March 2021. Accessed September 20, 2023. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1087917/SSI-annual-report-2020-to-2021.pdf

Bode LG, Kluytmans JA, Wertheim HF, et al. . Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med. 2010;362(1):9-17. doi:10.1056/NEJMoa0808939 PubMed DOI

Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014;27(2):302-345. doi:10.1128/CMR.00111-13 PubMed DOI PMC

Rakow A, Perka C, Trampuz A, Renz N. Origin and characteristics of haematogenous periprosthetic joint infection. Clin Microbiol Infect. 2019;25(7):845-850. doi:10.1016/j.cmi.2018.10.010 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...