-
Je něco špatně v tomto záznamu ?
Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli
PP. Navarro, A. Vettiger, VY. Ananda, PM. Llopis, C. Allolio, TG. Bernhardt, LH. Chao
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R35 GM142553
NIGMS NIH HHS - United States
R01 AI083365
NIAID NIH HHS - United States
Howard Hughes Medical Institute - United States
- MeSH
- amidohydrolasy MeSH
- buněčná stěna MeSH
- buněčné dělení MeSH
- Escherichia coli * fyziologie MeSH
- peptidoglykan * MeSH
- tvar buňky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The bacterial division apparatus catalyses the synthesis and remodelling of septal peptidoglycan (sPG) to build the cell wall layer that fortifies the daughter cell poles. Understanding of this essential process has been limited by the lack of native three-dimensional views of developing septa. Here, we apply state-of-the-art cryogenic electron tomography (cryo-ET) and fluorescence microscopy to visualize the division site architecture and sPG biogenesis dynamics of the Gram-negative bacterium Escherichia coli. We identify a wedge-like sPG structure that fortifies the ingrowing septum. Experiments with strains defective in sPG biogenesis revealed that the septal architecture and mode of division can be modified to more closely resemble that of other Gram-negative (Caulobacter crescentus) or Gram-positive (Staphylococcus aureus) bacteria, suggesting that a conserved mechanism underlies the formation of different septal morphologies. Finally, analysis of mutants impaired in amidase activation (ΔenvC ΔnlpD) showed that cell wall remodelling affects the placement and stability of the cytokinetic ring. Taken together, our results support a model in which competition between the cell elongation and division machineries determines the shape of cell constrictions and the poles they form. They also highlight how the activity of the division system can be modulated to help generate the diverse array of shapes observed in the bacterial domain.
Department of Genetics Blavatnik Institute Harvard Medical School Boston MA USA
Department of Microbiology Blavatnik Institute Harvard Medical School Boston MA USA
Department of Molecular Biology Massachusetts General Hospital Boston MA USA
Faculty of Mathematics and Physics Mathematical Institute Charles University Prague Czech Republic
Howard Hughes Medical Institute Harvard Medical School Boston MA USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22033162
- 003
- CZ-PrNML
- 005
- 20230131151753.0
- 007
- ta
- 008
- 230120s2022 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41564-022-01210-z $2 doi
- 035 __
- $a (PubMed)36097171
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Navarro, Paula P $u Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA $u Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA $1 https://orcid.org/0000000291231132
- 245 10
- $a Cell wall synthesis and remodelling dynamics determine division site architecture and cell shape in Escherichia coli / $c PP. Navarro, A. Vettiger, VY. Ananda, PM. Llopis, C. Allolio, TG. Bernhardt, LH. Chao
- 520 9_
- $a The bacterial division apparatus catalyses the synthesis and remodelling of septal peptidoglycan (sPG) to build the cell wall layer that fortifies the daughter cell poles. Understanding of this essential process has been limited by the lack of native three-dimensional views of developing septa. Here, we apply state-of-the-art cryogenic electron tomography (cryo-ET) and fluorescence microscopy to visualize the division site architecture and sPG biogenesis dynamics of the Gram-negative bacterium Escherichia coli. We identify a wedge-like sPG structure that fortifies the ingrowing septum. Experiments with strains defective in sPG biogenesis revealed that the septal architecture and mode of division can be modified to more closely resemble that of other Gram-negative (Caulobacter crescentus) or Gram-positive (Staphylococcus aureus) bacteria, suggesting that a conserved mechanism underlies the formation of different septal morphologies. Finally, analysis of mutants impaired in amidase activation (ΔenvC ΔnlpD) showed that cell wall remodelling affects the placement and stability of the cytokinetic ring. Taken together, our results support a model in which competition between the cell elongation and division machineries determines the shape of cell constrictions and the poles they form. They also highlight how the activity of the division system can be modulated to help generate the diverse array of shapes observed in the bacterial domain.
- 650 _2
- $a amidohydrolasy $7 D000581
- 650 _2
- $a buněčné dělení $7 D002455
- 650 _2
- $a tvar buňky $7 D048430
- 650 _2
- $a buněčná stěna $7 D002473
- 650 12
- $a Escherichia coli $x fyziologie $7 D004926
- 650 12
- $a peptidoglykan $7 D010457
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 700 1_
- $a Vettiger, Andrea $u Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- 700 1_
- $a Ananda, Virly Y $u Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- 700 1_
- $a Llopis, Paula Montero $u MicRoN Core, Harvard Medical School, Boston, MA, USA
- 700 1_
- $a Allolio, Christoph $u Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000275259266
- 700 1_
- $a Bernhardt, Thomas G $u Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. thomas_bernhardt@hms.harvard.edu $u Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA. thomas_bernhardt@hms.harvard.edu $1 https://orcid.org/0000000335667756
- 700 1_
- $a Chao, Luke H $u Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. chao@molbio.mgh.harvard.edu $u Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. chao@molbio.mgh.harvard.edu $1 https://orcid.org/0000000248494148
- 773 0_
- $w MED00195029 $t Nature microbiology $x 2058-5276 $g Roč. 7, č. 10 (2022), s. 1621-1634
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36097171 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230120 $b ABA008
- 991 __
- $a 20230131151749 $b ABA008
- 999 __
- $a ok $b bmc $g 1891744 $s 1184497
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2022 $b 7 $c 10 $d 1621-1634 $e 20220912 $i 2058-5276 $m Nature microbiology $n Nat Microbiol $x MED00195029
- GRA __
- $a R35 GM142553 $p NIGMS NIH HHS $2 United States
- GRA __
- $a R01 AI083365 $p NIAID NIH HHS $2 United States
- GRA __
- $p Howard Hughes Medical Institute $2 United States
- LZP __
- $a Pubmed-20230120