KLK5 and KLK7 Ablation Fully Rescues Lethality of Netherton Syndrome-Like Phenotype
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28095415
PubMed Central
PMC5283769
DOI
10.1371/journal.pgen.1006566
PII: PGENETICS-D-16-01813
Knihovny.cz E-zdroje
- MeSH
- delece genu MeSH
- fenotyp * MeSH
- inhibitor serinových peptidas Kazalova typu 5 MeSH
- kalikreiny genetika MeSH
- myši MeSH
- Nethertonův syndrom genetika patologie MeSH
- serpiny genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitor serinových peptidas Kazalova typu 5 MeSH
- kalikreiny MeSH
- Klk5 protein, mouse MeSH Prohlížeč
- Klk7 protein, mouse MeSH Prohlížeč
- serpiny MeSH
- Spink5 protein, mouse MeSH Prohlížeč
Netherton syndrome (NS) is a severe skin disease caused by the loss of protease inhibitor LEKTI, which leads to the dysregulation of epidermal proteases and severe skin-barrier defects. KLK5 was proposed as a major protease in NS pathology, however its inactivation is not sufficient to rescue the lethal phenotype of LEKTI-deficient mice. In this study, we further elucidated the in vivo roles of the epidermal proteases in NS using a set of mouse models individually or simultaneously deficient for KLK5 and KLK7 on the genetic background of a novel NS-mouse model. We show that although the ablation of KLK5 or KLK7 is not sufficient to rescue the lethal effect of LEKTI-deficiency simultaneous deficiency of both KLKs completely rescues the epidermal barrier and the postnatal lethality allowing mice to reach adulthood with fully functional skin and normal hair growth. We report that not only KLK5 but also KLK7 plays an important role in the inflammation and defective differentiation in NS and KLK7 activity is not solely dependent on activation by KLK5. Altogether, these findings show that unregulated activities of KLK5 and KLK7 are responsible for NS development and both proteases should become targets for NS therapy.
Department of Medical Biosciences Pathology Umea University Umea Sweden
Faculty of Sciences Charles University Prague Prague Czech Republic
Zobrazit více v PubMed
Bitoun E, Chavanas S, Irvine AD, Lonie L, Bodemer C, et al. (2002) Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J Invest Dermatol 118: 352–361. 10.1046/j.1523-1747.2002.01603.x PubMed DOI
Furio L, Hovnanian A (2014) Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy. Biol Chem 395: 945–958. 10.1515/hsz-2014-0137 PubMed DOI
Sun JD, Linden KG (2006) Netherton syndrome: a case report and review of the literature. Int J Dermatol 45: 693–697. 10.1111/j.1365-4632.2005.02637.x PubMed DOI
Ito M, Ito K, Hashimoto K (1984) Pathogenesis in trichorrhexis invaginata (bamboo hair). J Invest Dermatol 83: 1–6. PubMed
Smith DL, Smith JG, Wong SW, deShazo RD (1995) Netherton's syndrome: a syndrome of elevated IgE and characteristic skin and hair findings. J Allergy Clin Immunol 95: 116–123. PubMed
Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, et al. (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25: 141–142. 10.1038/75977 PubMed DOI
Bitoun E, Micheloni A, Lamant L, Bonnart C, Tartaglia-Polcini A, et al. (2003) LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet 12: 2417–2430. 10.1093/hmg/ddg247 PubMed DOI
Fortugno P, Bresciani A, Paolini C, Pazzagli C, El Hachem M, et al. (2011) Proteolytic activation cascade of the Netherton syndrome-defective protein, LEKTI, in the epidermis: implications for skin homeostasis. J Invest Dermatol 131: 2223–2232. 10.1038/jid.2011.174 PubMed DOI
Bennett K, Callard R, Heywood W, Harper J, Jayakumar A, et al. (2010) New role for LEKTI in skin barrier formation: label-free quantitative proteomic identification of caspase 14 as a novel target for the protease inhibitor LEKTI. J Proteome Res 9: 4289–4294. 10.1021/pr1003467 PubMed DOI
Mitsudo K, Jayakumar A, Henderson Y, Frederick MJ, Kang Y, et al. (2003) Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry 42: 3874–3881. 10.1021/bi027029v PubMed DOI
Jayakumar A, Kang Y, Mitsudo K, Henderson Y, Frederick MJ, et al. (2004) Expression of LEKTI domains 6–9' in the baculovirus expression system: recombinant LEKTI domains 6–9' inhibit trypsin and subtilisin A. Protein Expr Purif 35: 93–101. 10.1016/j.pep.2003.12.004 PubMed DOI
Egelrud T, Brattsand M, Kreutzmann P, Walden M, Vitzithum K, et al. (2005) hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br J Dermatol 153: 1200–1203. 10.1111/j.1365-2133.2005.06834.x PubMed DOI
Schechter NM, Choi EJ, Wang ZM, Hanakawa Y, Stanley JR, et al. (2005) Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol Chem 386: 1173–1184. 10.1515/BC.2005.134 PubMed DOI
Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, et al. (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 18: 3607–3619. 10.1091/mbc.E07-02-0124 PubMed DOI PMC
Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, et al. (2005) Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 37: 56–65. 10.1038/ng1493 PubMed DOI
Komatsu N, Takata M, Otsuki N, Ohka R, Amano O, et al. (2002) Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol 118: 436–443. 10.1046/j.0022-202x.2001.01663.x PubMed DOI
Descargues P, Deraison C, Prost C, Fraitag S, Mazereeuw-Hautier J, et al. (2006) Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J Invest Dermatol 126: 1622–1632. 10.1038/sj.jid.5700284 PubMed DOI
Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, et al. (2004) Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol 122: 1235–1244. 10.1111/j.0022-202X.2004.22512.x PubMed DOI
Sandilands A, Sutherland C, Irvine AD, McLean WH (2009) Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122: 1285–1294. 10.1242/jcs.033969 PubMed DOI PMC
Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, et al. (2010) Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 120: 871–882. 10.1172/JCI41440 PubMed DOI PMC
Sakabe J, Yamamoto M, Hirakawa S, Motoyama A, Ohta I, et al. (2013) Kallikrein-related peptidase 5 functions in proteolytic processing of profilaggrin in cultured human keratinocytes. J Biol Chem 288: 17179–17189. 10.1074/jbc.M113.476820 PubMed DOI PMC
Briot A, Lacroix M, Robin A, Steinhoff M, Deraison C, et al. (2010) Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J Invest Dermatol 130: 2736–2742. 10.1038/jid.2010.233 PubMed DOI
Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, et al. (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206: 1135–1147. 10.1084/jem.20082242 PubMed DOI PMC
Furio L, Pampalakis G, Michael IP, Nagy A, Sotiropoulou G, et al. (2015) KLK5 Inactivation Reverses Cutaneous Hallmarks of Netherton Syndrome. PLoS Genet 11: e1005389 10.1371/journal.pgen.1005389 PubMed DOI PMC
Raghunath M, Tontsidou L, Oji V, Aufenvenne K, Schurmeyer-Horst F, et al. (2004) SPINK5 and Netherton syndrome: novel mutations, demonstration of missing LEKTI, and differential expression of transglutaminases. J Invest Dermatol 123: 474–483. 10.1111/j.0022-202X.2004.23220.x PubMed DOI
Yang T, Liang D, Koch PJ, Hohl D, Kheradmand F, et al. (2004) Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/- mice. Genes Dev 18: 2354–2358. 10.1101/gad.1232104 PubMed DOI PMC
Hewett DR, Simons AL, Mangan NE, Jolin HE, Green SM, et al. (2005) Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet 14: 335–346. 10.1093/hmg/ddi030 PubMed DOI
Kasparek P, Ileninova Z, Haneckova R, Kanchev I, Jenickova I, et al. (2016) A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene. Biol Chem 397: 1287–1292. 10.1515/hsz-2016-0194 PubMed DOI
Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, et al. (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474: 337–342. 10.1038/nature10163 PubMed DOI PMC
Chidgey M, Brakebusch C, Gustafsson E, Cruchley A, Hail C, et al. (2001) Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation. J Cell Biol 155: 821–832. 10.1083/jcb.200105009 PubMed DOI PMC
Leclerc EA, Huchenq A, Mattiuzzo NR, Metzger D, Chambon P, et al. (2009) Corneodesmosin gene ablation induces lethal skin-barrier disruption and hair-follicle degeneration related to desmosome dysfunction. J Cell Sci 122: 2699–2709. 10.1242/jcs.050302 PubMed DOI
Sales KU, Masedunskas A, Bey AL, Rasmussen AL, Weigert R, et al. (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42: 676–683. 10.1038/ng.629 PubMed DOI PMC
Miyai M, Matsumoto Y, Yamanishi H, Yamamoto-Tanaka M, Tsuboi R, et al. (2014) Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J Invest Dermatol 134: 1665–1674. 10.1038/jid.2014.3 PubMed DOI
Bhogal RK, Mouser PE, Higgins CA, Turner GA (2014) Protease activity, localization and inhibition in the human hair follicle. Int J Cosmet Sci 36: 46–53. 10.1111/ics.12091 PubMed DOI PMC
Kljuic A, Bazzi H, Sundberg JP, Martinez-Mir A, O'Shaughnessy R, et al. (2003) Desmoglein 4 in hair follicle differentiation and epidermal adhesion: evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell 113: 249–260. PubMed
Montagutelli X, Hogan ME, Aubin G, Lalouette A, Guenet JL, et al. (1996) Lanceolate hair (lah): a recessive mouse mutation with alopecia and abnormal hair. J Invest Dermatol 107: 20–25. PubMed
Alibardi L, Tschachler E, Eckhart L (2005) Distribution of caspase-14 in epidermis and hair follicles is evolutionarily conserved among mammals. Anat Rec A Discov Mol Cell Evol Biol 286: 962–973. 10.1002/ar.a.20234 PubMed DOI
Hansson L, Backman A, Ny A, Edlund M, Ekholm E, et al. (2002) Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 118: 444–449. 10.1046/j.0022-202x.2001.01684.x PubMed DOI
Ny A, Egelrud T (2004) Epidermal hyperproliferation and decreased skin barrier function in mice overexpressing stratum corneum chymotryptic enzyme. Acta Derm Venereol 84: 18–22. PubMed
Walker F, Nicole P, Jallane A, Soosaipillai A, Mosbach V, et al. (2014) Kallikrein-related peptidase 7 (KLK7) is a proliferative factor that is aberrantly expressed in human colon cancer. Biol Chem 395: 1075–1086. 10.1515/hsz-2014-0142 PubMed DOI
Stefansson K, Brattsand M, Roosterman D, Kempkes C, Bocheva G, et al. (2008) Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J Invest Dermatol 128: 18–25. 10.1038/sj.jid.5700965 PubMed DOI
Nylander-Lundqvist E, Egelrud T (1997) Formation of active IL-1 beta from pro-IL-1 beta catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm Venereol 77: 203–206. PubMed
Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, et al. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39: e82 10.1093/nar/gkr218 PubMed DOI PMC
Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, et al. (2012) TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40: W117–122. 10.1093/nar/gks608 PubMed DOI PMC
Flemr M, Malik R, Franke V, Nejepinska J, Sedlacek R, et al. (2013) A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155: 807–816. 10.1016/j.cell.2013.10.001 PubMed DOI
Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, et al. (2014) Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 588: 3982–3988. 10.1016/j.febslet.2014.09.014 PubMed DOI
Kasparek P, Krenek P, Buryova H, Suchanova S, Beck IM, et al. (2012) Transgenic mouse model expressing tdTomato under involucrin promoter as a tool for analysis of epidermal differentiation and wound healing. Transgenic Res 21: 683–689. 10.1007/s11248-011-9567-x PubMed DOI
Sondell B, Dyberg P, Anneroth GK, Ostman PO, Egelrud T (1996) Association between expression of stratum corneum chymotryptic enzyme and pathological keratinization in human oral mucosa. Acta Derm Venereol 76: 177–181. PubMed
Rescuing lethal phenotypes induced by disruption of genes in mice: a review of novel strategies
Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse
On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling