Exploring the binding pathways of the 14-3-3ζ protein: Structural and free-energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
260408
European Research Council - International
I 1999
Austrian Science Fund FWF - Austria
W 1224
Austrian Science Fund FWF - Austria
PubMed
28727767
PubMed Central
PMC5519036
DOI
10.1371/journal.pone.0180633
PII: PONE-D-16-38682
Knihovny.cz E-zdroje
- MeSH
- fosforylace MeSH
- konformace proteinů * MeSH
- molekulární modely * MeSH
- proteiny 14-3-3 metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny 14-3-3 MeSH
The 14-3-3 protein family performs regulatory functions in eukaryotic organisms by binding to a large number of phosphorylated protein partners. Whilst the binding mode of the phosphopeptides within the primary 14-3-3 binding site is well established based on the crystal structures of their complexes, little is known about the binding process itself. We present a computational study of the process by which phosphopeptides bind to the 14-3-3ζ protein. Applying a novel scheme combining Hamiltonian replica exchange molecular dynamics and distancefield restraints allowed us to map and compare the most likely phosphopeptide-binding pathways to the 14-3-3ζ protein. The most important structural changes to the protein and peptides involved in the binding process were identified. In order to bind phosphopeptides to the primary interaction site, the 14-3-3ζ adopted a newly found wide-opened conformation. Based on our findings we additionally propose a secondary interaction site on the inner surface of the 14-3-3ζ dimer, and a direct interference on the binding process by the flexible C-terminal tail. A minimalistic model was designed to allow for the efficient calculation of absolute binding affinities. Binding affinities calculated from the potential of mean force along the binding pathway are in line with the available experimental estimates for two of the studied systems.
Zobrazit více v PubMed
Gardino AK, Smerdon SJ, Yaffe MB. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: A comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin Cancer Biol. 2006;16: 173–182. doi: 10.1016/j.semcancer.2006.03.007 PubMed DOI
Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, et al. The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity. Cell. 1997;91: 961–971. doi: 10.1016/S0092-8674(00)80487-0 PubMed DOI
Johnson C, Crowther S, Stafford MJ, Campbell DG, Toth R, MacKintosh C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem J. 2010;427: 69–78. doi: 10.1042/BJ20091834 PubMed DOI PMC
Hritz J, Byeon I-JL, Krzysiak T, Martinez A, Sklenar V, Gronenborn AM. Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3 zeta: A Complex Story Elucidated by NMR. Biophys J. 2014;107: 2185–2194. doi: 10.1016/j.bpj.2014.08.039 PubMed DOI PMC
Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, et al. Structural basis for protein—protein interactions in the 14-3-3 protein family. Proceedings of the National Academy of Sciences. 2006;103: 17237–17242. PubMed PMC
de Ruiter A, Oostenbrink C. Protein-Ligand Binding from Distancefield Distances and Hamiltonian Replica Exchange Simulations. J Chem Theory Comput. 2013;9: 883–892. doi: 10.1021/ct300967a PubMed DOI
Oostenbrink C, de Ruiter A, Hritz J, Vermeulen N. Malleability and Versatility of Cytochrome P450 Active Sites Studied by Molecular Simulations. Curr Drug Metab. 2012;13: 190–196. PubMed
Kostelecky B, Saurin AT, Purkiss A, Parker PJ, McDonald NQ. Recognition of an intra-chain tandem 14-3-3 binding site within PKCε. EMBO reports. 2009;10: 983–989. doi: 10.1038/embor.2009.150 PubMed DOI PMC
Molzan M, Kasper S, Roeglin L, Skwarczynska M, Sassa T, Inoue T, et al. Stabilization of Physical RAF/14-3-3 Interaction by Cotylenin A as Treatment Strategy for RAS Mutant Cancers. ACS Chem Biol. 2013;8: 1869–1875. doi: 10.1021/cb4003464 PubMed DOI
Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996;84: 889–897. PubMed
Truong AB, Masters SC, Yang HZ, Fu HA. Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins. 2002;49: 321–325. doi: 10.1002/prot.10210 PubMed DOI
Williams DM, Ecroyd H, Goodwin KL, Dai H, Fu H, Woodcock JM, et al. NMR spectroscopy of 14-3-3ζ reveals a flexible C-terminal extension: differentiation of the chaperone and phosphoserine-binding activities of 14-3-3ζ. Biochemical Journal. 2011;437: 493–503. doi: 10.1042/BJ20102178 PubMed DOI
Hu G, Li H, Liu J-Y, Wang J. Insight into Conformational Change for 14-3-3σ Protein by Molecular Dynamics Simulation. International Journal of Molecular Sciences. 2014;15: 2794–2810. doi: 10.3390/ijms15022794 PubMed DOI PMC
Sluchanko NN, Gusev NB. Oligomeric structure of 14-3-3 protein: What do we know about monomers? FEBS Letters. 2012;586: 4249–4256. doi: 10.1016/j.febslet.2012.10.048 PubMed DOI
Molzan M, Ottmann C. Synergistic Binding of the Phosphorylated S233- and S259-Binding Sites of C-RAF to One 14-3-3ζ Dimer. Journal of Molecular Biology. 2012;423: 486–495. doi: 10.1016/j.jmb.2012.08.009 PubMed DOI
Schmid N, Christ CD, Christen M, Eichenberger AP, van Gunsteren WF. Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation. Comput Phys Commun. 2012;183: 890–903. doi: 10.1016/j.cpc.2011.12.014 DOI
Eichenberger AP, Allison JR, Dolenc J, Geerke DP, Horta BAC, Meier K, et al. GROMOS plus plus Software for the Analysis of Biomolecular Simulation Trajectories. J Chem Theory Comput. 2011;7: 3379–3390. doi: 10.1021/ct2003622 PubMed DOI
Schrödinger, LLC. The PyMOL Molecular Graphics System.
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences. 2001;98: 10037–10041. PubMed PMC
Nagy G, Oostenbrink C. Dihedral-Based Segment Identification and Classification of Biopolymers I: Proteins. J Chem Inf Model. 2014;54: 266–277. doi: 10.1021/ci400541d PubMed DOI PMC
Sali A, Blundell T. Comparative Protein Modeling by Satisfaction of Spatial Restraints. J Mol Biol. 1993;234: 779–815. doi: 10.1006/jmbi.1993.1626 PubMed DOI
Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal. 2011;40: 843–856. doi: 10.1007/s00249-011-0700-9 PubMed DOI
Petrov D, Margreitter C, Grandits M, Oostenbrink C, Zagrovic B. A Systematic Framework for Molecular Dynamics Simulations of Protein Post-Translational Modifications. Wei G, editor. PLoS Computational Biology. 2013;9: e1003154 doi: 10.1371/journal.pcbi.1003154 PubMed DOI PMC
Berendsen HJC, Postma JPM, Van Gunsteren WF, Hermans J. Interaction models for water in relation to protein hydration. Intermolecular Forces. 1981;11: 331–338.
Ryckaert J, Ciccotti G, Berendsen H. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints—Molecular-Dynamics of N-Alkanes. J Comput Phys. 1977;23: 327–341. doi: 10.1016/0021-9991(77)90098-5 DOI
Berendsen H, Postma J, Van Gunsteren W, Dinola A, Haak J. Molecular-Dynamics with Coupling to an External Bath. J Chem Phys. 1984;81: 3684–3690. doi: 10.1063/1.448118 DOI
Tironi I, Sperb R, Smith P, Van Gunsteren W. A generalized reaction field method for molecular-dynamics simulations. J Chem Phys. 1995;102: 5451–5459. doi: 10.1063/1.469273 DOI
Heinz T, van Gunsteren W, Hunenberger P. Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations. J Chem Phys. 2001;115: 1125–1136. doi: 10.1063/1.1379764 DOI
Amadei A, Chillemi G, Ceruso MA, Grottesi A, Di Nola A. Molecular dynamics simulations with constrained roto-translational motions: Theoretical basis and statistical mechanical consistency. J Chem Phys. 2000;112: 9–23. doi: 10.1063/1.480557 DOI
Sugita Y, Kitao A, Okamoto Y. Multidimensional replica-exchange method for free-energy calculations. J Chem Phys. 2000;113: 6042–6051. doi: 10.1063/1.1308516 DOI
Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of computational chemistry. 1992;13: 1011–1021.
Doudou S, Burton NA, Henchman RH. Standard free energy of binding from a one-dimensional potential of mean force. J Chem Theory Comput. 2009;5: 909–918. doi: 10.1021/ct8002354 PubMed DOI