Primary cilia-associated signalling in squamous cell carcinoma of head and neck region
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
39234399
PubMed Central
PMC11372790
DOI
10.3389/fonc.2024.1413255
Knihovny.cz E-resources
- Keywords
- Hedgehog, PDGF, Wnt, head and neck cancer, oral squamous cell carcinoma, primary cilium, signalling pathway inhibitors,
- Publication type
- Journal Article MeSH
- Review MeSH
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Department of Anatomy Histology and Embryology University of Veterinary Sciences Brno Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Maxillofacial Surgery University Hospital Ostrava Ostrava Czechia
See more in PubMed
Barsouk A, Aluru JS, Rawla P, Saginala K, Barsouk A. Epidemiology, risk factors, and prevention of head and neck squamous cell carcinoma. Med Sci. (2023) 11:42. doi: 10.3390/medsci11020042 PubMed DOI PMC
Syrjänen S. Human papillomavirus (HPV) in head and neck cancer. J Clin Virol. (2005) 32:59–66. doi: 10.1016/j.jcv.2004.11.017 PubMed DOI
Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. . Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. (2010) 11:21–8. doi: 10.1016/S1470-2045(09)70311-0 PubMed DOI
Gilbert MR, Lim C-M, Kim S. Head and neck cancer. In: Malek A, editor. Experimental metastasis: modeling and analysis. Springer Netherlands, Dordrecht: (2013). p. 7–26. doi: 10.1007/978-94-007-7835-1_2 DOI
Schuler PJ, Harasymczuk M, Visus C, Deleo A, Trivedi S, Lei Y, et al. . Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin Cancer Res. (2014) 20:2433–44. doi: 10.1158/1078-0432.CCR-13-2617 PubMed DOI PMC
Vigneswaran N, Williams MD. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Surg Clinics North America. (2014) 26:123–41. doi: 10.1016/j.coms.2014.01.001 PubMed DOI PMC
Rothenberg SM, Ellisen LW. The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest. (2012) 122:1951–7. doi: 10.1172/JCI59889 PubMed DOI PMC
Sun Z, Sun X, Chen Z, Du J, Wu Y. Head and neck squamous cell carcinoma: risk factors, molecular alterations, immunology and peptide vaccines. Int J Pept Res Ther. (2022) 28:19. doi: 10.1007/s10989-021-10334-5 PubMed DOI PMC
Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. (2015) 8:11884–94. PubMed PMC
Omar E. Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma - a systematic review. Head Face Med. (2015) 11:6. doi: 10.1186/s13005-015-0063-z PubMed DOI PMC
Mao L, Hong WK, Papadimitrakopoulou VA. Focus on head and neck cancer. Cancer Cell. (2004) 5:311–6. doi: 10.1016/S1535-6108(04)00090-X PubMed DOI
Amaral MN, Faísca P, Ferreira HA, Gaspar MM, Reis CP. Current insights and progress in the clinical management of head and neck cancer. Cancers. (2022) 14:6079. doi: 10.3390/cancers14246079 PubMed DOI PMC
Koo K, Mouradov D, Angel CM, Iseli TA, Wiesenfeld D, McCullough MJ, et al. . Genomic signature of oral squamous cell carcinomas from non-smoking non-drinking patients. Cancers. (2021) 13:1029. doi: 10.3390/cancers13051029 PubMed DOI PMC
Min H-Y, Lee H-Y. Molecular targeted therapy for anticancer treatment. Exp Mol Med. (2022) 54:1670–94. doi: 10.1038/s12276-022-00864-3 PubMed DOI PMC
Cierpikowski P, Lis-Nawara A, Bar J. Sonic Hedgehog is a novel prognostic biomarker in patients with oral squamous cell carcinoma. Neoplasma. (2021) 68:867–74. doi: 10.4149/neo_2021_201204N1304 PubMed DOI
Fliegauf M, Omran H. Novel tools to unravel molecular mechanisms in cilia-related disorders. Trends Genet. (2006) 22:241–5. doi: 10.1016/j.tig.2006.03.002 PubMed DOI
Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. New Engl J Med. (2011) 364:1533–43. doi: 10.1056/NEJMra1010172 PubMed DOI PMC
Goto H, Inoko A, Inagaki M. Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci. (2013) 70:3893–905. doi: 10.1007/s00018-013-1302-8 PubMed DOI PMC
Lancaster MA, Gleeson JG. The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet Dev. (2009) 19:220–9. doi: 10.1016/j.gde.2009.04.008 PubMed DOI PMC
Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. (2007) 69:377–400. doi: 10.1146/annurev.physiol.69.040705.141236 PubMed DOI
Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol. (2002) 3:813–25. doi: 10.1038/nrm952 PubMed DOI
Scholey JM. Intraflagellar transport motors in cilia: moving along the cell’s antenna. J Cell Biol. (2008) 180:23–9. doi: 10.1083/jcb.200709133 PubMed DOI PMC
Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. (2019) 15:199–219. doi: 10.1038/s41581-019-0116-9 PubMed DOI PMC
Fabbri L, Bost F, Mazure N. Primary cilium in cancer hallmarks. Int J Mol Sci. (2019) 20:1336. doi: 10.3390/ijms20061336 PubMed DOI PMC
Higgins M, Obaidi I, McMorrow T. Primary cilia and their role in cancer (Review). Oncol Lett. (2019) 17(3):3041–7. doi: 10.3892/ol.2019.9942 PubMed DOI PMC
Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L. PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol. (2005) 25:8285–98. doi: 10.1128/MCB.25.18.8285-8298.2005 PubMed DOI PMC
Danilov AI, Gomes-Leal W, Ahlenius H, Kokaia Z, Carlemalm E, Lindvall O. Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia. (2009) 57:136–52. doi: 10.1002/glia.20741 PubMed DOI
Martin L, Kaci N, Estibals V, Goudin N, Garfa-Traore M, Benoist-Lasselin C, et al. . Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia. Hum Mol Genet. (2018) 27:1–13. doi: 10.1093/hmg/ddx374 PubMed DOI
Zhu D, Shi S, Wang H, Liao K. Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J Cell Sci. (2009) 122:2760–8. doi: 10.1242/jcs.046276 PubMed DOI
Teilmann SC, Christensen ST. Localization of the angiopoietin receptors Tie-1 and Tie-2 on the primary cilia in the female reproductive organs. Cell Biol Int. (2005) 29:340–6. doi: 10.1016/j.cellbi.2005.03.006 PubMed DOI
Clement CA, Ajbro KD, Koefoed K, Vestergaard ML, Veland IR, Henriques de Jesus MP, et al. . TGF-β Signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. (2013) 3:1806–14. doi: 10.1016/j.celrep.2013.05.020 PubMed DOI
Gencer S, Oleinik N, Kim J, Panneer Selvam S, De Palma R, Dany M, et al. . TGF-β receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis. Sci Signaling. (2017) 10:eaam7464. doi: 10.1126/scisignal.aam7464 PubMed DOI PMC
Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomedicine Pharmacotherapy. (2023) 161:114491. doi: 10.1016/j.biopha.2023.114491 PubMed DOI
Zou X, Tang XY, Qu ZY, Sun ZW, Ji CF, Li YJ, et al. . Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int J Biol Macromolecules. (2022) 202:539–57. doi: 10.1016/j.ijbiomac.2022.01.113 PubMed DOI
Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, et al. . PDGFRαα Signaling is regulated through the primary cilium in fibroblasts. Curr Biol. (2005) 15:1861–6. doi: 10.1016/j.cub.2005.09.012 PubMed DOI
MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. (2009) 17:9–26. doi: 10.1016/j.devcel.2009.06.016 PubMed DOI PMC
May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia. (2012) 1:7. doi: 10.1186/2046-2530-1-7 PubMed DOI PMC
VanHook AM. Wnt signaling and cilia intertwined. Sci Signaling. (2012) 5:ec22–ec22. doi: 10.1126/scisignal.2002860 DOI
Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, et al. . Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol. (2008) 10:70–6. doi: 10.1038/ncb1670 PubMed DOI
Vuong LT, Iomini C, Balmer S, Esposito D, Aaronson SA, Mlodzik M. Kinesin-2 and IFT-A act as a complex promoting nuclear localization of β-catenin during Wnt signalling. Nat Commun. (2018) 9:5304. doi: 10.1038/s41467-018-07605-z PubMed DOI PMC
Nakagawa N, Li J, Yabuno-Nakagawa K, Eom TY, Cowles M, Mapp T, et al. . APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. (2017) 31:1679–92. doi: 10.1101/gad.302679.117 PubMed DOI PMC
Bernatik O, Paclikova P, Kotrbova A, Bryja V, Cajanek L. Primary cilia formation does not rely on WNT/β-catenin signaling. Front Cell Dev Biol. (2021) 9:623753. doi: 10.3389/fcell.2021.623753 PubMed DOI PMC
Jacob LS, Wu X, Dodge ME, Fan CW, Kulak O, Chen B, et al. . Genome-wide RNAi screen reveals disease-associated genes that are common to hedgehog and wnt signaling. Sci Signaling. (2011) 4:ra4. doi: 10.1126/scisignal.2001225 PubMed DOI PMC
McMurray RJ, Wann AK, Thompson CL, Connelly JT, Knight MM. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep. (2013) 3:3545. doi: 10.1038/srep03545 PubMed DOI PMC
Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Krönig C, et al. . Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet. (2005) 37:537–43. doi: 10.1038/ng1552 PubMed DOI PMC
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. (2008) 4:68–75. doi: 10.4161/org.4.2.5851 PubMed DOI PMC
Patel V, Li L, Cobo-Stark P, Shao X, Somlo S, Lin F, et al. . Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum Mol Genet. (2008) 17:1578–90. doi: 10.1093/hmg/ddn045 PubMed DOI PMC
Tan AY, Blumenfeld J, Michaeel A, Donahue S, Bobb W, Parker T, et al. . Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism. Clin Genet. (2015) 87:373–7. doi: 10.1111/cge.12383 PubMed DOI
Sari IN, Phi LTH, Jun N, Wijaya YT, Lee S, Kwon HY. Hedgehog signaling in cancer: A prospective therapeutic target for eradicating cancer stem cells. Cells. (2018) 7:208. doi: 10.3390/cells7110208 PubMed DOI PMC
Singla V, Reiter JF. The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science. (2006) 313:629–33. doi: 10.1126/science.1124534 PubMed DOI
Hassounah NB, Bunch TA, McDermott KM. Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin Cancer Res. (2012) 18:2429–35. doi: 10.1158/1078-0432.CCR-11-0755 PubMed DOI PMC
Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. Vertebrate Smoothened functions at the primary cilium. Nature. (2005) 437:1018–21. doi: 10.1038/nature04117 PubMed DOI
Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Sci (New York N.Y.). (2007) 317:372–6. doi: 10.1126/science.1139740 PubMed DOI
Milenkovic L, Scott MP, Rohatgi R. Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol. (2009) 187:365–74. doi: 10.1083/jcb.200907126 PubMed DOI PMC
Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R. The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev. (2010) 24:670–82. doi: 10.1101/gad.1902910 PubMed DOI PMC
Tukachinsky H, Lopez LV, Salic A. A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol. (2010) 191:415–28. doi: 10.1083/jcb.201004108 PubMed DOI PMC
Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, Jr, et al. . Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis. Nat Med. (2009) 15:1055–61. doi: 10.1038/nm.2011 PubMed DOI PMC
Nozawa YI, Lin C, Chuang P-T. Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Curr Opin Genet Dev. (2013) 23:429–37. doi: 10.1016/j.gde.2013.04.008 PubMed DOI PMC
Kong JH, Yang L, Dessaud E, Chuang K, Moore DM, Rohatgi R, et al. . Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev Cell. (2015) 33:373–87. doi: 10.1016/j.devcel.2015.03.005 PubMed DOI PMC
Stasiulewicz M, Gray SD, Mastromina I, Silva JC, Björklund M, Seymour PA, et al. . A conserved role for Notch in priming the cellular response to Shh through ciliary localisation of the key Shh transducer, Smoothened. Development. (2015) 142(13):2291–303. doi: 10.1242/dev.125237 PubMed DOI PMC
Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE, Fuchs E. A role for the primary cilium in notch signaling and epidermal differentiation during skin development. Cell. (2011) 145:1129–41. doi: 10.1016/j.cell.2011.05.030 PubMed DOI PMC
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. (2008) 132:27–42. doi: 10.1016/j.cell.2007.12.018 PubMed DOI PMC
Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. (2013) 15:713–20. doi: 10.1038/ncb2788 PubMed DOI PMC
Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. (2014) 24:24–41. doi: 10.1038/cr.2013.168 PubMed DOI PMC
Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. (2015) 16:461–72. doi: 10.1038/nrm4024 PubMed DOI
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. (2011) 27:107–32. doi: 10.1146/annurev-cellbio-092910-154005 PubMed DOI
Pampliega O, Orhon I, Patel B, Sridhar S, Díaz-Carretero A, Beau I, et al. . Functional interaction between autophagy and ciliogenesis. Nature. (2013) 502:194–200. doi: 10.1038/nature12639 PubMed DOI PMC
Wang S, Livingston MJ, Su Y, Dong Z. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy. (2015) 11:607–16. doi: 10.1080/15548627.2015.1023983 PubMed DOI PMC
Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, et al. . Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature. (2013) 502:254–7. doi: 10.1038/nature12606 PubMed DOI PMC
Yamamoto Y, Chino H, Tsukamoto S, Ode KL, Ueda HR, Mizushima N. NEK9 regulates primary cilia formation by acting as a selective autophagy adaptor for MYH9/myosin IIA. Nat Commun. (2021) 12:3292. doi: 10.1038/s41467-021-23599-7 PubMed DOI PMC
Maharjan Y, Lee JN, Kwak S, Lim H, Dutta RK, Liu ZQ, et al. . Autophagy alteration prevents primary cilium disassembly in RPE1 cells. Biochem Biophys Res Commun. (2018) 500:242–8. doi: 10.1016/j.bbrc.2018.04.051 PubMed DOI
Mazure NM, Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol. (2010) 22:177–80. doi: 10.1016/j.ceb.2009.11.015 PubMed DOI
White E. The role for autophagy in cancer. J Clin Invest. (2015) 125:42–6. doi: 10.1172/JCI73941 PubMed DOI PMC
Seeley ES, Carrière C, Goetze T, Longnecker DS, Korc M. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. (2009) 69:422–30. doi: 10.1158/0008-5472.CAN-08-1290 PubMed DOI PMC
Santana-Codina N, Mancias JD, Kimmelman AC. The role of autophagy in cancer. Annu Rev Cancer Biol. (2017) 1:19–39. doi: 10.1146/annurev-cancerbio-041816-122338 PubMed DOI PMC
Li Q, Wang J, Meng X, Chen W, Feng J, Mao J. Identification of autophagy-related gene and lncRNA signatures in the prognosis of HNSCC. Oral Dis. (2023) 29:138–53. doi: 10.1111/odi.13889 PubMed DOI
Fan T, Wang X, Zhang S, Deng P, Jiang Y, Liang Y, et al. . NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduction Targeted Ther. (2022) 7:130. doi: 10.1038/s41392-022-00939-7 PubMed DOI PMC
Kallakuri S, Yu JA, Li J, Li Y, Weinstein BM, Nicoli S, et al. . Endothelial cilia are essential for developmental vascular integrity in zebrafish. J Am Soc Nephrol. (2015) 26:864–75. doi: 10.1681/ASN.2013121314 PubMed DOI PMC
Wilson MM, Weinberg RA, Lees JA, Guen VJ. Emerging mechanisms by which EMT programs control stemness. Trends Cancer. (2020) 6:775–80. doi: 10.1016/j.trecan.2020.03.011 PubMed DOI
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. (2009) 139:871–90. doi: 10.1016/j.cell.2009.11.007 PubMed DOI
Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. . Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. (2004) 117:927–39. doi: 10.1016/j.cell.2004.06.006 PubMed DOI
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. . The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. (2008) 133:704–15. doi: 10.1016/j.cell.2008.03.027 PubMed DOI PMC
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. (2014) 15:178–96. doi: 10.1038/nrm3758 PubMed DOI PMC
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. (2019) 20:69–84. doi: 10.1038/s41580-018-0080-4 PubMed DOI
Guen VJ, Chavarria TE, Kröger C, Ye X, Weinberg RA, Lees JA. EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci. (2017) 114:E10532–E10539. doi: 10.1073/pnas.1711534114 PubMed DOI PMC
Liu X, Wang Y, Liu F, Zhang M, Song H, Zhou B, et al. . Wdpcp promotes epicardial EMT and epicardium-derived cell migration to facilitate coronary artery remodeling. Sci Signaling. (2018) 11:eaah5770. doi: 10.1126/scisignal.aah5770 PubMed DOI
Fabbri L, Dufies M, Lacas-Gervais S, Gardie B, Gad-Lapiteau S, Parola J, et al. . Identification of a new aggressive axis driven by ciliogenesis and absence of VDAC1-ΔC in clear cell Renal Cell Carcinoma patients. Theranostics. (2020) 10:2696–713. doi: 10.7150/thno.41001 PubMed DOI PMC
Wilson MM, Callens C, Le Gallo M, Mironov S, Ding Q, Salamagnon A, et al. . An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. Sci Adv. (2021) 7:eabf6063. doi: 10.1126/sciadv.abf6063 PubMed DOI PMC
Lee D, Gimple RC, Wu X, Prager BC, Qiu Z, Wu Q, et al. . Superenhancer activation of KLHDC8A drives glioma ciliation and hedgehog signaling. J Clin Invest. (2023) 133:e163592. doi: 10.1172/JCI163592 PubMed DOI PMC
Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. (2003) 116:499–511. doi: 10.1242/jcs.00224 PubMed DOI
Krainock M, Toubat O, Danopoulos S, Beckham A, Warburton D, Kim R. Epicardial epithelial-to-mesenchymal transition in heart development and disease. J Clin Med. (2016) 5:27. doi: 10.3390/jcm5020027 PubMed DOI PMC
Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet. (2016) 48:648–56. doi: 10.1038/ng.3558 PubMed DOI PMC
Schneider S, De Cegli R, Nagarajan J, Kretschmer V, Matthiessen PA, Intartaglia D, et al. . Loss of ciliary gene bbs8 results in physiological defects in the retinal pigment epithelium. Front Cell Dev Biol. (2021) 9:607121. doi: 10.3389/fcell.2021.607121 PubMed DOI PMC
Han SJ, Jung JK, Im SS, Lee SR, Jang BC, Park KM, et al. . Deficiency of primary cilia in kidney epithelial cells induces epithelial to mesenchymal transition. Biochem Biophys Res Commun. (2018) 496:450–4. doi: 10.1016/j.bbrc.2018.01.079 PubMed DOI
Iruzubieta P, Castiella T, Monleón E, Berga C, Muñoz G, Junquera C. Primary cilia presence and implications in bladder cancer progression and invasiveness. Histochem Cell Biol. (2021) 155:547–60. doi: 10.1007/s00418-021-01965-2 PubMed DOI
De Cecco L, Nicolau M, Giannoccaro M, Daidone MG, Bossi P, Locati L, et al. . Head and neck cancer subtypes with biological and clinical relevance: Meta-analysis of gene-expression data. Oncotarget. (2015) 6:9627–42. doi: 10.18632/oncotarget.v6i11 PubMed DOI PMC
Keck MK, Zuo Z, Khattri A, Stricker TP, Brown CD, Imanguli M, et al. . Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res. (2015) 21:870–81. doi: 10.1158/1078-0432.CCR-14-2481 PubMed DOI
Egorova AD, van der Heiden K, Poelmann RE, Hierck BP. Primary cilia as biomechanical sensors in regulating endothelial function. Differentiation. (2012) 83:S56–61. doi: 10.1016/j.diff.2011.11.007 PubMed DOI
Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation. (2008) 117:1161–71. doi: 10.1161/CIRCULATIONAHA.107.710111 PubMed DOI PMC
Goetz JG, Steed E, Ferreira RR, Roth S, Ramspacher C, Boselli F, et al. . Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep. (2014) 6:799–808. doi: 10.1016/j.celrep.2014.01.032 PubMed DOI
Elworthy S, Savage AM, Wilkinson RN, Malicki JJ, Chico TJA. The role of endothelial cilia in postembryonic vascular development. Dev Dynamics. (2019) 248:410–25. doi: 10.1002/dvdy.40 PubMed DOI
Vion AC, Alt S, Klaus-Bergmann A, Szymborska A, Zheng T, Perovic T, et al. . Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J Cell Biol. (2018) 217:1651–65. doi: 10.1083/jcb.201706151 PubMed DOI PMC
Tsujikawa M, Malicki J. Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron. (2004) 42:703–16. doi: 10.1016/S0896-6273(04)00268-5 PubMed DOI
Krock BL, Perkins BD. The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle–kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci. (2008) 121:1907–15. doi: 10.1242/jcs.029397 PubMed DOI PMC
Sukumaran S, Perkins BD. Early defects in photoreceptor outer segment morphogenesis in zebrafish ift57, ift88 and ift172 Intraflagellar Transport mutants. Vision Res. (2009) 49:479–89. doi: 10.1016/j.visres.2008.12.009 PubMed DOI PMC
Liu M, Zhao J, Zhou Q, Peng Y, Zhou Y, Jiang Y. Primary cilia deficiency induces intracranial aneurysm. Shock. (2018) 49:604–11. doi: 10.1097/SHK.0000000000000961 PubMed DOI PMC
Pollock LM, Perkins B, Anand-Apte B. Primary cilia are present on endothelial cells of the hyaloid vasculature but are not required for the development of the blood-retinal barrier. PloS One. (2020) 15:e0225351. doi: 10.1371/journal.pone.0225351 PubMed DOI PMC
Ki SM, Kim JH, Won SY, Oh SJ, Lee IY, Bae YK, et al. . CEP41-mediated ciliary tubulin glutamylation drives angiogenesis through AURKA-dependent deciliation. EMBO Rep. (2020) 21:e48290. doi: 10.15252/embr.201948290 PubMed DOI PMC
Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. (2006) 441:437–43. doi: 10.1038/nature04871 PubMed DOI
Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1 (∗). J Biol Chem. (1995) 270:1230–7. doi: 10.1074/jbc.270.3.1230 PubMed DOI
Proulx-Bonneau S, Annabi B. The primary cilium as a biomarker in the hypoxic adaptation of bone marrow-derived mesenchymal stromal cells: a role for the secreted frizzled-related proteins. biomark Insights. (2011) 6:107–18. doi: 10.4137/BMI.S8247 PubMed DOI PMC
Lavagnino M, Oslapas AN, Gardner KL, Arnoczky SP. Hypoxia inhibits primary cilia formation and reduces cell-mediated contraction in stress-deprived rat tail tendon fascicles. Muscles Ligaments Tendons J. (2016) 6:193–7. doi: 10.11138/mltj/2016.6.2.193 PubMed DOI PMC
Leu T, Denda J, Wrobeln A, Fandrey J. Hypoxia-inducible factor-2alpha affects the MEK/ERK signaling pathway via primary cilia in connection with the intraflagellar transport protein 88 homolog. Mol Cell Biol. (2023) 43:174–83. doi: 10.1080/10985549.2023.2198931 PubMed DOI PMC
Cowman SJ, Koh MY. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer. (2022) 8:28–42. doi: 10.1016/j.trecan.2021.10.004 PubMed DOI PMC
Thoma CR, Frew IJ, Hoerner CR, Montani M, Moch H, Krek W. pVHL and GSK3β are components of a primary cilium-maintenance signalling network. Nat Cell Biol. (2007) 9:588–U191. doi: 10.1038/ncb1579 PubMed DOI
Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. (2004) 22:4991–5004. doi: 10.1200/JCO.2004.05.061 PubMed DOI
Lutz MS, Burk RD. Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. Cancer Res. (2006) 66:6903–7. doi: 10.1158/0008-5472.CAN-06-0501 PubMed DOI
Schraml P, Frew IJ, Thoma CR, Boysen G, Struckmann K, Krek W, et al. . Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Modern Pathol. (2009) 22:31–6. doi: 10.1038/modpathol.2008.132 PubMed DOI
Esteban MA, Harten SK, Tran MG, Maxwell PH. Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrology: JASN. (2006) 17:1801–6. doi: 10.1681/ASN.2006020181 PubMed DOI
Ding X-F, Zhou J, Hu QY, Liu SC, Chen G. The tumor suppressor pVHL down-regulates never-in-mitosis A-related kinase 8 via hypoxia-inducible factors to maintain cilia in human renal cancer cells. J Biol Chem. (2015) 290:1389–94. doi: 10.1074/jbc.M114.589226 PubMed DOI PMC
Xu J, Li H, Wang B, Xu Y, Yang J, Zhang X, et al. . VHL inactivation induces HEF1 and Aurora kinase A. J Am Soc Nephrology: JASN. (2010) 21:2041–6. doi: 10.1681/ASN.2010040345 PubMed DOI PMC
Toustrup K, Sørensen BS, Lassen P, Wiuf C, Alsner J, Overgaard J. Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiotherapy Oncol. (2012) 102:122–9. doi: 10.1016/j.radonc.2011.09.010 PubMed DOI
Heft Neal ME, Brenner JC. Prognosis to radiation unlocked: how hypoxia methylome may hold the key in HNSCC. Clin Cancer Res. (2023) 29:2954–6. doi: 10.1158/1078-0432.CCR-23-1132 PubMed DOI PMC
Bodle JC, Loboa EG. Concise review: primary cilia: control centers for stem cell lineage specification and potential targets for cell-based therapies. Stem Cells. (2016) 34:1445–54. doi: 10.1002/stem.2341 PubMed DOI
Tummala P, Arnsdorf EJ, Jacobs CR. The role of primary cilia in mesenchymal stem cell differentiation: A pivotal switch in guiding lineage commitment. Cell Mol Bioengineering. (2010) 3:207–12. doi: 10.1007/s12195-010-0127-x PubMed DOI PMC
Huang J, Shen CB, Wu WB, Ren JW, Xu L, Liu S, et al. . Primary cilia mediate sonic hedgehog signaling to regulate neuronal-like differentiation of bone mesenchymal stem cells for resveratrol induction in vitro . J Neurosci Res. (2014) 92:587–96. doi: 10.1002/jnr.23343 PubMed DOI
Bodle JC, Rubenstein CD, Phillips ME, Bernacki SH, Qi J, Banes AJ, et al. . Primary cilia: the chemical antenna regulating human adipose-Derived stem cell osteogenesis. PloS One. (2013) 8:e62554. doi: 10.1371/journal.pone.0062554 PubMed DOI PMC
Dalbay MT, Thorpe SD, Connelly JT, Chapple JP, Knight MM. Adipogenic differentiation of hMSCs is mediated by recruitment of IGF-1r onto the primary cilium associated with cilia elongation. Stem Cells. (2015) 33:1952–61. doi: 10.1002/stem.1975 PubMed DOI PMC
Forcioli-Conti N, Lacas-Gervais S, Dani C, Peraldi P. The primary cilium undergoes dynamic size modifications during adipocyte differentiation of human adipose stem cells. Biochem Biophys Res Commun. (2015) 458:117–22. doi: 10.1016/j.bbrc.2015.01.078 PubMed DOI
Ma Z, Qin M, Liang H, Chen R, Cai S, Huang Z, et al. . Primary cilia-dependent signaling is involved in regulating mesenchymal stem cell proliferation and pluripotency maintenance. J Mol Histol. (2020) 51:241–50. doi: 10.1007/s10735-020-09876-7 PubMed DOI PMC
Ritter A, Louwen F, Yuan J. Deficient primary cilia in obese adipose-derived mesenchymal stem cells: obesity, a secondary ciliopathy? Obes Rev. (2018) 19:1317–28. doi: 10.1111/obr.12716 PubMed DOI
Ritter A, Kreis NN, Roth S, Friemel A, Jennewein L, Eichbaum C, et al. . Restoration of primary cilia in obese adipose-derived mesenchymal stem cells by inhibiting Aurora A or extracellular signal-regulated kinase. Stem Cell Res Ther. (2019) 10:255. doi: 10.1186/s13287-019-1373-z PubMed DOI PMC
Yanardag S, Pugacheva EN. Primary cilium is involved in stem cell differentiation and renewal through the regulation of multiple signaling pathways. Cells. (2021) 10:1428. doi: 10.3390/cells10061428 PubMed DOI PMC
Singer D, Thamm K, Zhuang H, Karbanová J, Gao Y, Walker JV, et al. . Prominin-1 controls stem cell activation by orchestrating ciliary dynamics. EMBO J. (2019) 38:e99845. doi: 10.15252/embj.201899845 PubMed DOI PMC
Yuan K, Frolova N, Xie Y, Wang D, Cook L, Kwon YJ, et al. . Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J Histochem Cytochem. (2010) 58:857–70. doi: 10.1369/jhc.2010.955856 PubMed DOI PMC
Menzl I, Lebeau L, Pandey R, Hassounah NB, Li FW, Nagle R, et al. . Loss of primary cilia occurs early in breast cancer development. Cilia. (2014) 3:7. doi: 10.1186/2046-2530-3-7 PubMed DOI PMC
Hassounah NB, Nunez M, Fordyce C, Roe D, Nagle R, Bunch T, et al. . Inhibition of ciliogenesis promotes hedgehog signaling, tumorigenesis, and metastasis in breast cancer. Mol Cancer Res. (2017) 15:1421–30. doi: 10.1158/1541-7786.MCR-17-0034 PubMed DOI PMC
Han Y-G, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez-Buylla A. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med. (2009) 15:1062–5. doi: 10.1038/nm.2020 PubMed DOI PMC
Fu W, Asp P, Canter B, Dynlacht BD. Primary cilia control hedgehog signaling during muscle differentiation and are deregulated in rhabdomyosarcoma. Proc Natl Acad Sci. (2014) 111:9151–6. doi: 10.1073/pnas.1323265111 PubMed DOI PMC
Hoang-Minh LB, Deleyrolle LP, Siebzehnrubl D, Ugartemendia G, Futch H, Griffith B, et al. . Disruption of KIF3A in patient-derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis. Oncotarget. (2016) 7:7029–43. doi: 10.18632/oncotarget.v7i6 PubMed DOI PMC
Álvarez-Satta M, Moreno-Cugnon L, Matheu A. Primary cilium and brain aging: role in neural stem cells, neurodegenerative diseases and glioblastoma. Ageing Res Rev. (2019) 52:53–63. doi: 10.1016/j.arr.2019.04.004 PubMed DOI
Goranci-Buzhala G, Mariappan A, Ricci-Vitiani L, Josipovic N, Pacioni S, Gottardo M, et al. . Cilium induction triggers differentiation of glioma stem cells. Cell Rep. (2021) 36:109656. doi: 10.1016/j.celrep.2021.109656 PubMed DOI
Luo Y, Xu WB, Ma B, Wang Y. Novel stemness-related gene signature predicting prognosis and indicating a different immune microenvironment in HNSCC. Front Genet. (2022) 13:822115. doi: 10.3389/fgene.2022.822115 PubMed DOI PMC
Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, et al. . Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. (2000) 151:709–18. doi: 10.1083/jcb.151.3.709 PubMed DOI PMC
Robert A, Margall-Ducos G, Guidotti JE, Brégerie O, Celati C, Bréchot C, et al. . The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci. (2007) 120:628–37. doi: 10.1242/jcs.03366 PubMed DOI
Rocha C, Papon L, Cacheux W, Marques Sousa P, Lascano V, Tort O, et al. . Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. (2014) 33:2247–60. doi: 10.15252/embj.201488466 PubMed DOI PMC
Basten SG, Willekers S, Vermaat JS, Slaats GG, Voest EE, van Diest PJ, et al. . Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia. (2013) 2:2. doi: 10.1186/2046-2530-2-2 PubMed DOI PMC
Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res. (2013) 73:2259–70. doi: 10.1158/0008-5472.CAN-12-2938 PubMed DOI PMC
Egeberg DL, Lethan M, Manguso R, Schneider L, Awan A, Jørgensen TS, et al. . Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia. (2012) 1:15. doi: 10.1186/2046-2530-1-15 PubMed DOI PMC
Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL, McDermott KM. Primary cilia are lost in preinvasive and invasive prostate cancer. PloS One. (2013) 8:e68521. doi: 10.1371/journal.pone.0068521 PubMed DOI PMC
Moser JJ, Fritzler MJ, Rattner JB. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells. BMC Cancer. (2009) 9:448. doi: 10.1186/1471-2407-9-448 PubMed DOI PMC
Snedecor ER, Sung CC, Moncayo A, Rothstein BE, Mockler DC, Tonnesen MG, et al. . Loss of primary cilia in melanoma cells is likely independent of proliferation and cell cycle progression. J Invest Dermatol. (2015) 135:1456–8. doi: 10.1038/jid.2015.22 PubMed DOI PMC
Ho L, Ali SA, Al-Jazrawe M, Kandel R, Wunder JS, Alman BA. Primary cilia attenuate hedgehog signalling in neoplastic chondrocytes. Oncogene. (2013) 32:5388–96. doi: 10.1038/onc.2012.588 PubMed DOI PMC
Gong F, Hou G, Liu H, Zhang M. Peroxiredoxin 1 promotes tumorigenesis through regulating the activity of mTOR/p70S6K pathway in esophageal squamous cell carcinoma. Med Oncol. (2015) 32:25. doi: 10.1007/s12032-014-0455-0 PubMed DOI
Sarkisian MR, Siebzehnrubl D, Hoang-Minh L, Deleyrolle L, Silver DJ, Siebzehnrubl FA, et al. . Detection of primary cilia in human glioblastoma. J Neuro-Oncology. (2014) 117:15–24. doi: 10.1007/s11060-013-1340-y PubMed DOI PMC
Filušová J, Putnová I, Hurník P, Daněk Z, Macháček C, Štembírek J, et al. . Alteration of primary cilia morphology and associated signalling in ameloblastoma. Arch Oral Biol. (2022) 142:105499. doi: 10.1016/j.archoralbio.2022.105499 PubMed DOI
Yasar B, Linton K, Slater C, Byers R. Primary cilia are increased in number and demonstrate structural abnormalities in human cancer. J Clin Pathol. (2017) 70:571–4. doi: 10.1136/jclinpath-2016-204103 PubMed DOI
Radkay-Gonzalez L, Faquin W, McHugh JB, Lewis JS, Jr, Tuluc M, Seethala RR. Ciliated adenosquamous carcinoma: expanding the phenotypic diversity of human papillomavirus-associated tumors. Head Neck Pathol. (2016) 10:167–75. doi: 10.1007/s12105-015-0653-x PubMed DOI PMC
Navale P, Genden EM, Beasley MB. Ciliated HPV-related carcinoma: A diagnostic challenge on frozen section. Head Neck Pathol. (2019) 13:727–30. doi: 10.1007/s12105-018-0976-5 PubMed DOI PMC
Emoto K, Masugi Y, Yamazaki K, Effendi K, Tsujikawa H, Tanabe M, et al. . Presence of primary cilia in cancer cells correlates with prognosis of pancreatic ductal adenocarcinoma. Hum Pathol. (2014) 45:817–25. doi: 10.1016/j.humpath.2013.11.017 PubMed DOI
Castiella T, Muñoz G, Luesma MJ, Santander S, Soriano M, Junquera C. Primary cilia in gastric Gastrointestinal Stromal Tumours (GISTs): an ultrastructural study. J Cell Mol Med. (2013) 17:844–53. doi: 10.1111/jcmm.12067 PubMed DOI PMC
Dvorak J, Sitorova V, Nikolov DH, Filipova A, Ryska A, Melichar B, et al. . Primary cilia in gastrointestinal stromal tumors. Neoplasma. (2014) 61:305–8. doi: 10.4149/neo_2014_039 PubMed DOI
Kowal TJ, Falk MM. Primary cilia found on HeLa and other cancer cells. Cell Biol Int. (2015) 39:1341–7. doi: 10.1002/cbin.10500 PubMed DOI PMC
Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. (2010) 11:331–44. doi: 10.1038/nrg2774 PubMed DOI PMC
Yin F, Chen Q, Shi Y, Xu H, Huang J, Qing M, et al. . Activation of EGFR-Aurora A induces loss of primary cilia in oral squamous cell carcinoma. Oral Dis. (2022) 28:621–30. doi: 10.1111/odi.13791 PubMed DOI
Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, et al. . Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. (2018) 23:3042–55. doi: 10.1016/j.celrep.2018.05.016 PubMed DOI PMC
Liu H, Kiseleva AA, Golemis EA. Ciliary signalling in cancer. Nat Rev Cancer. (2018) 18:511–24. doi: 10.1038/s41568-018-0023-6 PubMed DOI PMC
Guan Y, Zhang C, Zhang HY, Wei WL, Yue W, Zhao W, et al. . Primary cilia: Structure, dynamics, and roles in cancer cells and tumor microenvironment. J Cell Physiol. (2023) 238:1788–807. doi: 10.1002/jcp.31092 PubMed DOI
Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. (2016) 27:1482–92. doi: 10.1093/annonc/mdw168 PubMed DOI
Wang JX, Choi SYC, Niu X, Kang N, Xue H, Killam J, et al. . Lactic acid and an acidic tumor microenvironment suppress anticancer immunity. Int J Mol Sci. (2020) 21:8363. doi: 10.3390/ijms21218363 PubMed DOI PMC
Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncology. (2022) 12:961637. doi: 10.3389/fonc.2022.961637 PubMed DOI PMC
Wang B, Liang Z, Liu P. Functional aspects of primary cilium in signaling, assembly and microenvironment in cancer. J Cell Physiol. (2021) 236:3207–19. doi: 10.1002/jcp.30117 PubMed DOI PMC
Wann AKT, Knight MM. Primary cilia elongation in response to interleukin-1 mediates the inflammatory response. Cell Mol Life sciences: CMLS. (2012) 69:2967–77. doi: 10.1007/s00018-012-0980-y PubMed DOI PMC
Paul C, Tang R, Longobardi C, Lattanzio R, Eguether T, Turali H, et al. . Loss of primary cilia promotes inflammation and carcinogenesis. EMBO Rep. (2022) 23:e55687. doi: 10.15252/embr.202255687 PubMed DOI PMC
Takahashi K, Nagai T, Chiba S, Nakayama K, Mizuno K. Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J Cell Sci. (2017) 131(1):jcs.208769. doi: 10.1242/jcs.208769 PubMed DOI
Kang GM, Han YM, Ko HW, Kim J, Oh BC, Kwon I, et al. . Leptin elongates hypothalamic neuronal cilia via transcriptional regulation and actin destabilization. J Biol Chem. (2015) 290:18146–55. doi: 10.1074/jbc.M115.639468 PubMed DOI PMC
Willemarck N, Rysman E, Brusselmans K, Van Imschoot G, Vanderhoydonc F, Moerloose K, et al. . Aberrant activation of fatty acid synthesis suppresses primary cilium formation and distorts tissue development. Cancer Res. (2010) 70:9453–62. doi: 10.1158/0008-5472.CAN-10-2324 PubMed DOI
Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinogenesis. (2020) 59:766–74. doi: 10.1002/mc.23162 PubMed DOI PMC
Curry JM, Sprandio J, Cognetti D, Luginbuhl A, Bar-ad V, Pribitkin E, et al. . Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol. (2014) 41:217–34. doi: 10.1053/j.seminoncol.2014.03.003 PubMed DOI
Canning M, Guo G, Yu M, Myint C, Groves MW, Byrd JK, et al. . Heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy. Front Cell Dev Biol. (2019) 7:52. doi: 10.3389/fcell.2019.00052 PubMed DOI PMC
Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. (2019) 51:27–41. doi: 10.1016/j.immuni.2019.06.025 PubMed DOI PMC
Gavrielatou N, Doumas S, Economopoulou P, Foukas PG, Psyrri A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat Rev. (2020) 84:101977. doi: 10.1016/j.ctrv.2020.101977 PubMed DOI
Mathew R, Khor S, Hackett SR, Rabinowitz JD, Perlman DH, White E. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell. (2014) 55:916–30. doi: 10.1016/j.molcel.2014.07.019 PubMed DOI PMC
Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. (2021) 14:45. doi: 10.1186/s13045-021-01056-8 PubMed DOI PMC
Ferris RL, Blumenschein G, Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. . Nivolumab for recurrent squamous-cell carcinoma of the head and neck. New Engl J Med. (2016) 375:1856–67. doi: 10.1056/NEJMoa1602252 PubMed DOI PMC
Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. . Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. (2016) 17:956–65. doi: 10.1016/S1470-2045(16)30066-3 PubMed DOI
Saleh K, Eid R, Haddad FG, Khalife-Saleh N, Kourie HR. New developments in the management of head and neck cancer - impact of pembrolizumab. Ther Clin Risk Manage. (2018) 14:295–303. doi: 10.2147/TCRM.S125059 PubMed DOI PMC
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, et al. . Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis. (2019) 10:540. doi: 10.1038/s41419-019-1769-9 PubMed DOI PMC
Diagbouga MR, Morel S, Cayron AF, Haemmerli J, Georges M, Hierck BP, et al. . Primary cilia control endothelial permeability by regulating expression and location of junction proteins. Cardiovasc Res. (2022) 118:1583–96. doi: 10.1093/cvr/cvab165 PubMed DOI PMC
Fonte VG, Searls RL, Hilfer SR. The relationship of cilia with cell division and differentiation. J Cell Biol. (1971) 49:226–9. doi: 10.1083/jcb.49.1.226 PubMed DOI PMC
Kurahara H, Maemura K, Mataki Y, Sakoda M, Shinchi H, Natsugoe S. Impact of p53 and PDGFR-β Expression on metastasis and prognosis of patients with pancreatic cancer. World J Surg. (2016) 40:1977–84. doi: 10.1007/s00268-016-3477-2 PubMed DOI
Chen L, Shi Y, Jiang CY, Wei LX, Lv YL, Wang YL, et al. . Coexpression of PDGFR-alpha, PDGFR-beta and VEGF as a prognostic factor in patients with hepatocellular carcinoma. Int J Biol Markers. (2011) 26:108–16. doi: 10.5301/JBM.2011.8322 PubMed DOI
Hammer AM, Sizemore GM, Shukla VC, Avendano A, Sizemore ST, Chang JJ, et al. . Stromal PDGFR-α Activation enhances matrix stiffness, impedes mammary ductal development, and accelerates tumor growth. Neoplasia. (2017) 19:496–508. doi: 10.1016/j.neo.2017.04.004 PubMed DOI PMC
Matsuo K, Nishimura M, Komurov K, Shahzad MM, Ali-Fehmi R, Roh JW, et al. . Platelet-derived growth factor receptor alpha (PDGFRα) targeting and relevant biomarkers in ovarian carcinoma. Gynecologic Oncol. (2014) 132:166–75. doi: 10.1016/j.ygyno.2013.10.027 PubMed DOI PMC
Paulsson J, Ehnman M, Östman A. PDGF receptors in tumor biology: prognostic and predictive potential. Future Oncol. (2014) 10:1695–708. doi: 10.2217/fon.14.83 PubMed DOI
Wang Y, Appiah-Kubi K, Wu M, Yao X, Qian H, Wu Y, et al. . The platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are major players in oncogenesis, drug resistance, and attractive oncologic targets in cancer. Growth Factors. (2016) 34:64–71. doi: 10.1080/08977194.2016.1180293 PubMed DOI
Honami T, Shimo T, Okui T, Kurio N, Hassan NM, Iwamoto M, et al. . Sonic hedgehog signaling promotes growth of oral squamous cell carcinoma cells associated with bone destruction. Oral Oncol. (2012) 48:49–55. doi: 10.1016/j.oraloncology.2011.08.026 PubMed DOI
Leovic D, Sabol M, Ozretic P, Musani V, Car D, Marjanovic K, et al. . Hh-Gli signaling pathway activity in oral and oropharyngeal squamous cell carcinoma. Head Neck. (2012) 34:104–12. doi: 10.1002/hed.21696 PubMed DOI
Schneider S, Thurnher D, Kloimstein P, Leitner V, Petzelbauer P, Pammer J, et al. . Expression of the Sonic hedgehog pathway in squamous cell carcinoma of the skin and the mucosa of the head and neck. Head Neck. (2011) 33:244–50. doi: 10.1002/hed.21437 PubMed DOI
Fan H-X, Wang S, Zhao H, Liu N, Chen D, Sun M, et al. . Sonic hedgehog signaling may promote invasion and metastasis of oral squamous cell carcinoma by activating MMP-9 and E-cadherin expression. Med Oncol (Northwood London England). (2014) 31:41. doi: 10.1007/s12032-014-0041-5 PubMed DOI
Gonzalez AC, Ferreira M, Ariel T, Reis SR, Andrade Z, Peixoto Medrado A. Immunohistochemical evaluation of hedgehog signalling in epithelial/mesenchymal interactions in squamous cell carcinoma transformation: a pilot study. J Oral Pathol Med. (2016) 45:173–9. doi: 10.1111/jop.12346 PubMed DOI
Srinath S, Iyengar A, Mysorekar V. Sonic hedgehog in oral squamous cell carcinoma: An immunohistochemical study. J Oral Maxillofac Pathol. (2016) 20:377. doi: 10.4103/0973-029X.190906 PubMed DOI PMC
Takabatake K, Shimo T, Murakami J, Anqi C, Kawai H, Yoshida S, et al. . The role of sonic hedgehog signaling in the tumor microenvironment of oral squamous cell carcinoma. Int J Mol Sci. (2019) 20:5779. doi: 10.3390/ijms20225779 PubMed DOI PMC
Cavicchioli Buim ME, Gurgel CA, Gonçalves Ramos EA, Lourenço SV, Soares FA. Activation of sonic hedgehog signaling in oral squamous cell carcinomas: a preliminary study. Hum Pathol. (2011) 42:1484–90. doi: 10.1016/j.humpath.2010.12.015 PubMed DOI
Wang Y-F, Chang CJ, Lin CP, Chang SY, Chu PY, Tai SK, et al. . Expression of hedgehog signaling molecules as a prognostic indicator of oral squamous cell carcinoma. Head Neck. (2012) 34:1556–61. doi: 10.1002/hed.21958 PubMed DOI
Chen G, Yan M, Li RR, Chen WT. Sonic hedgehog signalling activation contributes to ALCAM over-expression and poor clinical outcome in patients with oral squamous cell carcinoma. Chin J Dental Res. (2018) 21:31–40. doi: 10.3290/j.cjdr.a39916 PubMed DOI
Kuttan NA, Bhakthan NM. Epidermal growth factor receptor (EGFR) in oral squamous cell carcinomas: overexpression, localization and therapeutic implications. Indian J Dental Res. (1997) 8:9–18. PubMed
Ulanovski D, Stern Y, Roizman P, Shpitzer T, Popovtzer A, Feinmesser R. Expression of EGFR and Cerb-B2 as prognostic factors in cancer of the tongue. Oral Oncol. (2004) 40:532–7. doi: 10.1016/j.oraloncology.2003.11.004 PubMed DOI
Satgunaseelan L, Porazinski S, Strbenac D, Istadi A, Willet C, Chew T, et al. . Oral squamous cell carcinoma in young patients show higher rates of EGFR amplification: implications for novel personalized therapy. Front Oncol. (2021) 11:750852. doi: 10.3389/fonc.2021.750852 PubMed DOI PMC
Ong HS, Gokavarapu S, Tian Z, Li J, Xu Q, Zhang CP, et al. . PDGFRA mRNA overexpression is associated with regional metastasis and reduced survival in oral squamous cell carcinoma. J Oral Pathol Med. (2018) 47:652–9. doi: 10.1111/jop.12713 PubMed DOI
Lin L-H, Lin JS, Yang CC, Cheng HW, Chang KW, Liu CJ. Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and poor prognosis in oral squamous cell carcinoma. Int J Mol Sci. (2020) 21:2360. doi: 10.3390/ijms21072360 PubMed DOI PMC
Zou C, Huang D, Wei H, Wu S, Song J, Tang Z, et al. . Identification of immune-related risk signatures for the prognostic prediction in oral squamous cell carcinoma. J Immunol Res. (2021) 2021:1–13. doi: 10.1155/2021/6203759 PubMed DOI PMC
Wang Y, Cao Z, Liu F, Ou Y. Clinical significance of activated Wnt/β-catenin signaling in apoptosis inhibition of oral cancer. Open Life Sci. (2021) 16:1045–52. doi: 10.1515/biol-2021-0104 PubMed DOI PMC
Huang L, Luo EL, Xie J, Gan RH, Ding LC, Su BH, et al. . FZD2 regulates cell proliferation and invasion in tongue squamous cell carcinoma. Int J Biol Sci. (2019) 15:2330–9. doi: 10.7150/ijbs.33881 PubMed DOI PMC
Mishra R, Nagini S, Rana A. Expression and inactivation of glycogen synthase kinase 3 alpha/ beta and their association with the expression of cyclin D1 and p53 in oral squamous cell carcinoma progression. Mol Cancer. (2015) 14:20. doi: 10.1186/s12943-015-0300-x PubMed DOI PMC
Kartha VK, Stawski L, Han R, Haines P, Gallagher G, Noonan V, et al. . PDGFRβ Is a novel marker of stromal activation in oral squamous cell carcinomas. PloS One Edited by. (2016) 11:e0154645. doi: 10.1371/journal.pone.0154645 PubMed DOI PMC
Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Internal Med. (2018) 283:16–44. doi: 10.1111/joim.12690 PubMed DOI
Jing Y, Jin Y, Wang Y, Chen S, Zhang X, Song Y, et al. . SPARC promotes the proliferation and metastasis of oral squamous cell carcinoma by PI3K/AKT/PDGFB/PDGFRβ axis. J Cell Physiol. (2019) 234:15581–93. doi: 10.1002/jcp.28205 PubMed DOI
Ren X, Li L, Wu J, Lin K, He Y, Bian L. PDGF−BB regulates the transformation of fibroblasts into cancer−associated fibroblasts via the lncRNA LURAP1L−AS1/LURAP1L/IKK/IκB/NF−κB signaling pathway. Oncol Lett. (2021) 22:537. doi: 10.3892/ol.2021.12798 PubMed DOI PMC
Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer. (2012) 12:553–63. doi: 10.1038/nrc3309 PubMed DOI
Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. (2014) 79:34–74. doi: 10.1016/j.phrs.2013.11.002 PubMed DOI
Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. (2008) 371:1695–709. doi: 10.1016/S0140-6736(08)60728-X PubMed DOI PMC
Patel K, Bhat FA, Patil S, Routray S, Mohanty N, Nair B, et al. . Whole-exome sequencing analysis of oral squamous cell carcinoma delineated by tobacco usage habits. Front Oncol. (2021) 11:660696. doi: 10.3389/fonc.2021.660696 PubMed DOI PMC
Batta N, Pandey M. Mutational spectrum of tobacco associated oral squamous carcinoma and its therapeutic significance. World J Surg Oncol. (2019) 17:198. doi: 10.1186/s12957-019-1741-2 PubMed DOI PMC
Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, et al. . WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol. (2003) 201:204–12. doi: 10.1002/path.1449 PubMed DOI
Zingg D, Debbache J, Peña-Hernández R, Antunes AT, Schaefer SM, Cheng PF, et al. . EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell. (2018) 34:69–84.e14. doi: 10.1016/j.ccell.2018.06.001 PubMed DOI
Youn YH, Hou S, Wu CC, Kawauchi D, Orr BA, Robinson GW, et al. . Primary cilia control translation and the cell cycle in medulloblastoma. Genes Dev. (2022) 36:737–51. doi: 10.1101/gad.349596.122 PubMed DOI PMC
Behrens J. Control of β-catenin signaling in tumor development. Ann New York Acad Sci. (2000) 910:21–35. doi: 10.1111/j.1749-6632.2000.tb06698.x PubMed DOI
Yao H, Ashihara E, Maekawa T. Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets. (2011) 15:873–87. doi: 10.1517/14728222.2011.577418 PubMed DOI
Song J, Chang I, Chen Z, Kang M, Wang CY. Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal wnt signaling. PloS One. (2010) 5:e11456. doi: 10.1371/journal.pone.0011456 PubMed DOI PMC
Odajima T, Sasaki Y, Tanaka N, Kato-Mori Y, Asanuma H, Ikeda T, et al. . Abnormal β-catenin expression in oral cancer with no gene mutation: correlation with expression of cyclin D1 and epidermal growth factor receptor, Ki-67 labeling index, and clinicopathological features. Hum Pathol. (2005) 36:234–41. doi: 10.1016/j.humpath.2004.12.009 PubMed DOI
Lee C-H, Hung HW, Hung PH, Shieh YS. Epidermal growth factor receptor regulates β-catenin location, stability, and transcriptional activity in oral cancer. Mol Cancer. (2010) 9:64. doi: 10.1186/1476-4598-9-64 PubMed DOI PMC
Teglund S, Toftgård R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta (BBA) - Rev Cancer. (2010) 1805:181–208. doi: 10.1016/j.bbcan.2010.01.003 PubMed DOI
Maesawa C, Tamura G, Iwaya T, Ogasawara S, Ishida K, Sato N, et al. . Mutations in the human homologue of the Drosophila patched gene in esophageal squamous cell carcinoma. Genes Chromosomes Cancer. (1998) 21:276–9. doi: 10.1002/(ISSN)1098-2264 PubMed DOI
Tostar U, Toftgård R, Zaphiropoulos PG, Shimokawa T. Reduction of human embryonal rhabdomyosarcoma tumor growth by inhibition of the hedgehog signaling pathway. Genes Cancer. (2010) 1:941–51. doi: 10.1177/1947601910385449 PubMed DOI PMC
Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. (2013) 19:1410–22. doi: 10.1038/nm.3389 PubMed DOI
Hui M, Cazet A, Nair R, Watkins DN, O'Toole SA, Swarbrick A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res. (2013) 15:203. doi: 10.1186/bcr3401 PubMed DOI PMC
Dimitrova K, Stoehr M, Dehghani F, Dietz A, Wichmann G, Bertolini J, et al. . Overexpression of the Hedgehog signalling pathway in head and neck squamous cell carcinoma. Onkologie. (2013) 36:279–86. doi: 10.1159/000350322 PubMed DOI
Rodrigues MFSD, Miguita L, De Andrade NP, Heguedusch D, Rodini CO, Moyses RA, et al. . GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma. Int J Oncol. (2018) 53:2458–72. doi: 10.3892/ijo.2018.4572 PubMed DOI PMC
Nishimaki H, Kasai K, Kozaki Ki Takeo T, Ikeda H, Saga S, et al. . A role of activated Sonic hedgehog signaling for the cellular proliferation of oral squamous cell carcinoma cell line. Biochem Biophys Res Commun. (2004) 314:313–20. doi: 10.1016/j.bbrc.2003.12.097 PubMed DOI
Zhao G, Li H, Guo Q, Zhou A, Wang X, Li P, et al. . Exosomal Sonic Hedgehog derived from cancer-associated fibroblasts promotes proliferation and migration of esophageal squamous cell carcinoma. Cancer Med. (2020) 9:2500–13. doi: 10.1002/cam4.2873 PubMed DOI PMC
Lu X, Wang Z, Huang H, Wang H. Hedgehog signaling promotes multidrug resistance by regulation of ABC transporters in oral squamous cell carcinoma. J Oral Pathol Med. (2020) 49:897–906. doi: 10.1111/jop.13050 PubMed DOI
Richtig G, Aigelsreiter AM, Asslaber M, Weiland T, Pichler M, Eberhard K, et al. . Hedgehog pathway proteins SMO and GLI expression as prognostic markers in head and neck squamous cell carcinoma. Histopathology. (2019) 75:118–27. doi: 10.1111/his.13860 PubMed DOI PMC
Patel HV, Joshi JS, Shah FD. A clinicopathological exploration of Hedgehog signaling: implications in oral carcinogenesis. J Cancer Res Clin Oncol. (2023) 149:16525–35. doi: 10.1007/s00432-023-05383-w PubMed DOI PMC
Kiseleva AA, Korobeynikov VA, Nikonova AS, Zhang P, Makhov P, Deneka AY, et al. . Unexpected activities in regulating ciliation contribute to off-target effects of targeted drugs. Clin Cancer Res. (2019) 25:4179–93. doi: 10.1158/1078-0432.CCR-18-3535 PubMed DOI PMC
Oliva M, Chepeha D, Araujo DV, Diaz-Mejia JJ, Olson P, Prawira A, et al. . Antitumor immune effects of preoperative sitravatinib and nivolumab in oral cavity cancer: SNOW window-of-opportunity study. J ImmunoTherapy Cancer. (2021) 9:e003476. doi: 10.1136/jitc-2021-003476 PubMed DOI PMC
Lu Y, Lin J, Duan M, Rui Y, Zheng H, Zhu L, et al. . Anlotinib suppresses oral squamous cell carcinoma growth and metastasis by targeting the RAS protein to inhibit the PI3K/Akt signalling pathway. Analytical Cell Pathol. (2021) 2021:1–9. doi: 10.1155/2021/5228713 PubMed DOI PMC
Deng Z, Liao W, Wei W, Zhong G, He C, Zhang H, et al. . Anlotinib as a promising inhibitor on tumor growth of oral squamous cell carcinoma through cell apoptosis and mitotic catastrophe. Cancer Cell Int. (2021) 21:37. doi: 10.1186/s12935-020-01721-x PubMed DOI PMC
Goel B, Tiwari AK, Pandey RK, Singh AP, Kumar S, Sinha A, et al. . Therapeutic approaches for the treatment of head and neck squamous cell carcinoma–An update on clinical trials. Trans Oncol. (2022) 21:101426. doi: 10.1016/j.tranon.2022.101426 PubMed DOI PMC
Byeon HK, Ku M, Yang J. Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med. (2019) 51:1–14. doi: 10.1038/s12276-018-0202-2 PubMed DOI PMC
Abdul Razak AR, Soulières D, Laurie SA, Hotte SJ, Singh S, Winquist E, et al. . A phase II trial of dacomitinib, an oral pan-human EGF receptor (HER) inhibitor, as first-line treatment in recurrent and/or metastatic squamous-cell carcinoma of the head and neck. Ann Oncol. (2013) 24:761–9. doi: 10.1093/annonc/mds503 PubMed DOI
Burtness B, Bourhis JP, Vermorken JB, Harrington KJ, Cohen EE. Afatinib versus placebo as adjuvant therapy after chemoradiation in a double-blind, phase III study (LUX-Head & Neck 2) in patients with primary unresected, clinically intermediate-to-high-risk head and neck cancer: study protocol for a randomized controlled trial. Trials. (2014) 15:469. doi: 10.1186/1745-6215-15-469 PubMed DOI PMC
Seiwert TY, Fayette J, Cupissol D, Del Campo JM, Clement PM, Hitt R, et al. . A randomized, phase II study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck. Ann Oncol. (2014) 25:1813–20. doi: 10.1093/annonc/mdu216 PubMed DOI PMC
Mirghani H, Amen F, Blanchard P, Moreau F, Guigay J, Hartl DM, et al. . Treatment de-escalation in HPV-positive oropharyngeal carcinoma: Ongoing trials, critical issues and perspectives. Int J Cancer. (2015) 136:1494–503. doi: 10.1002/ijc.28847 PubMed DOI
Herchenhorn D, Dias FL, Viegas CM, Federico MH, Araújo CM, Small I, et al. . Phase I/II study of erlotinib combined with cisplatin and radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck. Int J Radiat OncologyBiologyPhysics. (2010) 78:696–702. doi: 10.1016/j.ijrobp.2009.08.079 PubMed DOI
Setúbal Destro Rodrigues MF, Gammon L, Rahman MM, Biddle A, Nunes FD, Mackenzie IC. Effects of Cetuximab and Erlotinib on the behaviour of cancer stem cells in head and neck squamous cell carcinoma. Oncotarget. (2018) 9:13488–500. doi: 10.18632/oncotarget.v9i17 PubMed DOI PMC
Keysar SB, Le PN, Anderson RT, Morton JJ, Bowles DW, Paylor JJ, et al. . Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer. Cancer Res. (2013) 73:3381–92. doi: 10.1158/0008-5472.CAN-12-4047 PubMed DOI PMC
Liebig H, Günther G, Kolb M, Mozet C, Boehm A, Dietz A, et al. . Reduced proliferation and colony formation of head and neck squamous cell carcinoma (HNSCC) after dual targeting of EGFR and hedgehog pathways. Cancer Chemotherapy Pharmacol. (2017) 79:411–20. doi: 10.1007/s00280-017-3239-3 PubMed DOI
Bowles DW, Keysar SB, Eagles JR, Wang G, Glogowska MJ, McDermott JD, et al. . A pilot study of cetuximab and the hedgehog inhibitor IPI-926 in recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. (2016) 53:74–9. doi: 10.1016/j.oraloncology.2015.11.014 PubMed DOI PMC
Kasahara K, Aoki H, Kiyono T, Wang S, Kagiwada H, Yuge M, et al. . EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase. Nat Commun. (2018) 9:758. doi: 10.1038/s41467-018-03117-y PubMed DOI PMC
Sogutlu F, Kayabasi C, Ozmen Yelken B, Asik A, Gasimli R, Dogan F, et al. . The effect of ICRT-3 on Wnt signaling pathway in head and neck cancer. J Cell Biochem. (2019) 120:380–95. doi: 10.1002/jcb.27393 PubMed DOI
Kumari A, Shriwas O, Sisodiya S, Santra MK, Guchhait SK, Dash R, et al. . Microtubule-targeting agents impair kinesin-2-dependent nuclear transport of β-catenin: Evidence of inhibition of Wnt/β-catenin signaling as an important antitumor mechanism of microtubule-targeting agents. FASEB J. (2021) 35. doi: 10.1096/fj.202002594R PubMed DOI
Kleszcz R, Frąckowiak M, Dorna D, Paluszczak J. Combinations of PRI-724 Wnt/β-catenin pathway inhibitor with vismodegib, erlotinib, or HS-173 synergistically inhibit head and neck squamous cancer cells. Int J Mol Sci. (2023) 24:10448. doi: 10.3390/ijms241310448 PubMed DOI PMC
Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, et al. . Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/–p53–/– mice. Cancer Cell. (2004) 6:229–40. doi: 10.1016/j.ccr.2004.08.019 PubMed DOI
Peukert S, Miller-Moslin K. Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics. ChemMedChem. (2010) 5:500–12. doi: 10.1002/cmdc.201000011 PubMed DOI
Bariwal J, Kumar V, Dong Y, Mahato RI. Design of Hedgehog pathway inhibitors for cancer treatment. Medicinal Res Rev. (2019) 39:1137–204. doi: 10.1002/med.21555 PubMed DOI PMC
Rimkus T, Carpenter RL, Qasem S, Chan M, Lo HW. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers. (2016) 8:22. doi: 10.3390/cancers8020022 PubMed DOI PMC
Incardona JP, Gaffield W, Kapur RP, Roelink H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Dev (Cambridge England). (1998) 125:3553–62. doi: 10.1242/dev.125.18.3553 PubMed DOI
Ma H, Li H-Q, Zhang X. Cyclopamine, a naturally occurring alkaloid, and its analogues may find wide applications in cancer therapy. Curr Topics Medicinal Chem. (2013) 13:2208–15. doi: 10.2174/15680266113139990153 PubMed DOI
Yan M, Wang L, Zuo H, Zhang Z, Chen W, Mao L, et al. . HH/GLI signalling as a new therapeutic target for patients with oral squamous cell carcinoma. Oral Oncol. (2011) 47:504–9. doi: 10.1016/j.oraloncology.2011.03.027 PubMed DOI
Lipinski RJ, Hutson PR, Hannam PW, Nydza RJ, Washington IM, Moore RW, et al. . Dose- and route-dependent teratogenicity, toxicity, and pharmacokinetic profiles of the hedgehog signaling antagonist cyclopamine in the mouse. Toxicological Sci. (2008) 104:189–97. doi: 10.1093/toxsci/kfn076 PubMed DOI PMC
Meiss F, Andrlová H, Zeiser R. Vismodegib. In: Martens UM, editor. Small Molecules in Oncology. Springer International Publishing, Cham: (2018). p. 125–39. doi: 10.1007/978-3-319-91442-8_9 DOI
Hehlgans S, Booms P, Güllülü Ö, Sader R, Rödel C, Balermpas P, et al. . Radiation sensitization of basal cell and head and neck squamous cell carcinoma by the hedgehog pathway inhibitor vismodegib. Int J Mol Sci. (2018) 19:2485. doi: 10.3390/ijms19092485 PubMed DOI PMC
Freitas RD, Dias RB, Vidal MTA, Valverde LF, Gomes Alves Costa R, Damasceno AKA, et al. . Inhibition of CAL27 oral squamous carcinoma cell by targeting hedgehog pathway with vismodegib or itraconazole. Front Oncol. (2020) 10:563838. doi: 10.3389/fonc.2020.563838 PubMed DOI PMC
Qiao Q, Xu L, Li Q, Wang Y, Lu H, Zhao N, et al. . Bone morphogenetic protein receptor 1α promotes osteolytic lesion of oral squamous cell carcinoma by SHH-dependent osteoclastogenesis. Cancer Sci. (2022) 113:1639–51. doi: 10.1111/cas.15330 PubMed DOI PMC
Casey D, Demko S, Shord S, Zhao H, Chen H, He K, et al. . FDA approval summary: sonidegib for locally advanced basal cell carcinoma. Clin Cancer Res. (2017) 23:2377–81. doi: 10.1158/1078-0432.CCR-16-2051 PubMed DOI
Griffin LL, Ali FR, Lear JT. Non-melanoma skin cancer. Clin Med. (2016) 16:62–5. doi: 10.7861/clinmedicine.16-1-62 PubMed DOI PMC
Danhof R, Lewis K, Brown M. Small molecule inhibitors of the hedgehog pathway in the treatment of basal cell carcinoma of the skin. Am J Clin Dermatol. (2018) 19:195–207. doi: 10.1007/s40257-017-0319-4 PubMed DOI
Leavitt E, Lask G, Martin S. Sonic hedgehog pathway inhibition in the treatment of advanced basal cell carcinoma. Curr Treat Options Oncol. (2019) 20:84. doi: 10.1007/s11864-019-0683-9 PubMed DOI
Georgopapadakou NH, Walsh TJ. Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrobial Agents Chemotherapy. (1996) 40:279–91. doi: 10.1128/AAC.40.2.279 PubMed DOI PMC
Lepesheva GI, Waterman MR. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta (BBA) - Gen Subj. (2007) 1770:467–77. doi: 10.1016/j.bbagen.2006.07.018 PubMed DOI PMC
Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, et al. . Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth. Cancer Cell. (2010) 17:388–99. doi: 10.1016/j.ccr.2010.02.027 PubMed DOI PMC
Ban L, Mei T, Su Q, Li W, Huang Z, Liu L, et al. . Anti-fungal drug itraconazole exerts anti-cancer effects in oral squamous cell carcinoma via suppressing Hedgehog pathway. Life Sci. (2020) 254:117695. doi: 10.1016/j.lfs.2020.117695 PubMed DOI
Lauth M, Bergström A, Shimokawa T, Toftgård R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci. (2007) 104:8455–60. doi: 10.1073/pnas.0609699104 PubMed DOI PMC
Desch P, Asslaber D, Kern D, Schnidar H, Mangelberger D, Alinger B, et al. . Inhibition of GLI, but not Smoothened, induces apoptosis in chronic lymphocytic leukemia cells. Oncogene. (2010) 29:4885–95. doi: 10.1038/onc.2010.243 PubMed DOI
Wickström M, Dyberg C, Shimokawa T, Milosevic J, Baryawno N, Fuskevåg OM, et al. . Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo . Int J Cancer. (2013) 132:1516–24. doi: 10.1002/ijc.27820 PubMed DOI
You M, Varona-Santos J, Singh S, Robbins DJ, Savaraj N, Nguyen DM. Targeting of the Hedgehog signal transduction pathway suppresses survival of Malignant pleural mesothelioma cells in vitro . J Thorac Cardiovasc Surg. (2014) 147:508–16. doi: 10.1016/j.jtcvs.2013.08.035 PubMed DOI
Bacelar Sacramento De Araújo T, de Oliveira Siquara da Rocha L, Torres Andion Vidal M, Cerqueira Coelho PL, Galvão Dos Reis M, Solano de Freitas Souza B, et al. . GANT61 reduces hedgehog molecule (GLI1) expression and promotes apoptosis in metastatic oral squamous cell carcinoma cells. Int J Mol Sci. (2020) 21:6076. doi: 10.3390/ijms21176076 PubMed DOI PMC
Kurebayashi J, Koike Y, Ohta Y, Saitoh W, Yamashita T, Kanomata N, et al. . Anti-cancer stem cell activity of a hedgehog inhibitor GANT 61 in estrogen receptor-positive breast cancer cells. Cancer Sci. (2017) 108:918–30. doi: 10.1111/cas.13205 PubMed DOI PMC
Boyko-Fabian M, Niehr F, Distel L, Budach V, Tinhofer I. Increased growth-Inhibitory and cytotoxic activity of arsenic trioxide in head and neck carcinoma cells with functional p53 deficiency and resistance to EGFR blockade. PloS One. (2014) 9:e98867. doi: 10.1371/journal.pone.0098867 PubMed DOI PMC
Nogueira RLR, de Araújo TBS, Valverde LF, Silva VAO, Cavalcante BRR, Rossi EA, et al. . Arsenic trioxide triggers apoptosis of metastatic oral squamous cells carcinoma with concomitant downregulation of GLI1 in hedgehog signaling. Biomedicines. (2022) 10:3293. doi: 10.3390/biomedicines10123293 PubMed DOI PMC
Kim J, Lee JJ, Kim J, Gardner D, Beachy PA. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci. (2010) 107:13432–7. doi: 10.1073/pnas.1006822107 PubMed DOI PMC
Kumar P, Gao Q, Ning Y, Wang Z, Krebsbach PH, Polverini PJ. Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol Cancer Ther. (2008) 7:2060–9. doi: 10.1158/1535-7163.MCT-08-0287 PubMed DOI
Nakaoka T, Ota A, Ono T, Karnan S, Konishi H, Furuhashi A, et al. . Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell Oncol. (2014) 37:119–29. doi: 10.1007/s13402-014-0167-7 PubMed DOI
Hu W-C, Teo WH, Huang TF, Lee TC, Lo JF. Combinatorial low dose arsenic trioxide and cisplatin exacerbates autophagy via AMPK/STAT3 signaling on targeting head and neck cancer initiating cells. Front Oncol. (2020) 10:463. doi: 10.3389/fonc.2020.00463 PubMed DOI PMC
Hay JF, Lappin K, Liberante F, Kettyle LM, Matchett KB, Thompson A, et al. . Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy. Oncotarget. (2017) 8:67891–903. doi: 10.18632/oncotarget.v8i40 PubMed DOI PMC
Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. (2008) 133:612–26. doi: 10.1016/j.cell.2008.03.025 PubMed DOI PMC
Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A, et al. . Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci. (2009) 122:3531–41. doi: 10.1242/jcs.046813 PubMed DOI
Rodriguez CP, Wu QV, Voutsinas J, Fromm JR, Jiang X, Pillarisetty VG, et al. . A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clin Cancer Res. (2020) 26:837–45. doi: 10.1158/1078-0432.CCR-19-2214 PubMed DOI
Chen Q, Li J, Yang X, Ma J, Gong F, Liu Y. Prdx1 promotes the loss of primary cilia in esophageal squamous cell carcinoma. BMC Cancer. (2020) 20:372. doi: 10.1186/s12885-020-06898-y PubMed DOI PMC