Decoding the Genomic Variability among Members of the Bifidobacterium dentium Species

. 2020 Nov 03 ; 8 (11) : . [epub] 20201103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33152994
Odkazy

PubMed 33152994
PubMed Central PMC7693768
DOI 10.3390/microorganisms8111720
PII: microorganisms8111720
Knihovny.cz E-zdroje

Members of the Bifidobacterium dentium species are usually identified in the oral cavity of humans and associated with the development of plaque and dental caries. Nevertheless, they have also been detected from fecal samples, highlighting a widespread distribution among mammals. To explore the genetic variability of this species, we isolated and sequenced the genomes of 18 different B. dentium strains collected from fecal samples of several primate species and an Ursus arctos. Thus, we investigated the genomic variability and metabolic abilities of the new B. dentium isolates together with 20 public genome sequences. Comparative genomic analyses provided insights into the vast metabolic repertoire of the species, highlighting 19 glycosyl hydrolases families shared between each analyzed strain. Phylogenetic analysis of the B. dentium taxon, involving 1140 conserved genes, revealed a very close phylogenetic relatedness among members of this species. Furthermore, low genomic variability between strains was also confirmed by an average nucleotide identity analysis showing values higher than 98.2%. Investigating the genetic features of each strain, few putative functional mobile elements were identified. Besides, a consistent occurrence of defense mechanisms such as CRISPR-Cas and restriction-modification systems may be responsible for the high genome synteny identified among members of this taxon.

Zobrazit více v PubMed

Kostic A.D., Howitt M.R., Garrett W.S. Exploring host-microbiota interactions in animal models and humans. Genes Dev. 2013;27:701–718. doi: 10.1101/gad.212522.112. PubMed DOI PMC

Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I. The human microbiome project. Nature. 2007;449:804–810. doi: 10.1038/nature06244. PubMed DOI PMC

Donovan S.M. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes. 2017;8:75–81. doi: 10.1080/19490976.2017.1299309. PubMed DOI PMC

Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., Belzer C., Delgado Palacio S., Arboleya Montes S., Mancabelli L., et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. Mmbr. 2017;81 doi: 10.1128/MMBR.00036-17. PubMed DOI PMC

Lugli G.A., Mangifesta M., Duranti S., Anzalone R., Milani C., Mancabelli L., Alessandri G., Turroni F., Ossiprandi M.C., van Sinderen D., et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst. Appl. Microbiol. 2018;41:173–183. doi: 10.1016/j.syapm.2018.01.002. PubMed DOI

Lugli G.A., Milani C., Duranti S., Mancabelli L., Mangifesta M., Turroni F., Viappiani A., van Sinderen D., Ventura M. Tracking the Taxonomy of the Genus Bifidobacterium Based on a Phylogenomic Approach. Appl. Environ. Microbiol. 2018;84 doi: 10.1128/AEM.02249-17. PubMed DOI PMC

Duranti S., Mangifesta M., Lugli G.A., Turroni F., Anzalone R., Milani C., Mancabelli L., Ossiprandi M.C., Ventura M. Bifidobacterium vansinderenii sp. nov., isolated from faeces of emperor tamarin (Saguinus imperator) Int. J. Syst. Evol. Microbiol. 2017;67:3987–3995. doi: 10.1099/ijsem.0.002243. PubMed DOI

Modesto M., Michelini S., Oki K., Biavati B., Watanabe K., Mattarelli P. Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus) Int. J. Syst. Evol. Microbiol. 2018;68:575–581. doi: 10.1099/ijsem.0.002545. PubMed DOI

Modesto M., Puglisi E., Bonetti A., Michelini S., Spiezio C., Sandri C., Sgorbati B., Morelli L., Mattarelli P. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator) Syst. Appl. Microbiol. 2018;41:593–603. doi: 10.1016/j.syapm.2018.07.005. PubMed DOI

Modesto M., Michelini S., Sansosti M.C., De Filippo C., Cavalieri D., Qvirist L., Andlid T., Spiezio C., Sandri C., Pascarelli S., et al. Bifidobacterium callitrichidarum sp. nov. from the faeces of the emperor tamarin (Saguinus imperator) Int. J. Syst. Evol. Microbiol. 2018;68:141–148. doi: 10.1099/ijsem.0.002472. PubMed DOI

Michelini S., Modesto M., Filippini G., Spiezio C., Sandri C., Biavati B., Pisi A., Mattarelli P. Corrigendum to “Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: Three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.)” [Syst. Appl. Microbiol. 39 (2016) 229–236] Syst. Appl. Microbiol. 2018;41:528. doi: 10.1016/j.syapm.2018.05.002. PubMed DOI

Pechar R., Killer J., Salmonova H., Geigerova M., Svejstil R., Svec P., Sedlacek I., Rada V., Benada O. Bifidobacterium apri sp. nov., a thermophilic actinobacterium isolated from the digestive tract of wild pigs (Sus scrofa) Int. J. Syst. Evol. Microbiol. 2017;67:2349–2356. doi: 10.1099/ijsem.0.001956. PubMed DOI

Alberoni D., Gaggia F., Baffoni L., Modesto M.M., Biavati B., Di Gioia D. Bifidobacterium xylocopae sp. nov. and Bifidobacterium aemilianum sp. nov., from the carpenter bee (Xylocopa violacea) digestive tract. Syst. Appl. Microbiol. 2019;42:205–216. doi: 10.1016/j.syapm.2018.11.005. PubMed DOI

Modesto M., Watanabe K., Arita M., Satti M., Oki K., Sciavilla P., Patavino C., Camma C., Michelini S., Sgorbati B., et al. Bifidobacterium jacchi sp. nov., isolated from the faeces of a baby common marmoset (Callithrix jacchus) Int. J. Syst. Evol. Microbiol. 2019;69:2477–2485. doi: 10.1099/ijsem.0.003518. PubMed DOI

Modesto M., Satti M., Watanabe K., Puglisi E., Morelli L., Huang C.H., Liou J.S., Miyashita M., Tamura T., Saito S., et al. Characterization of Bifidobacterium species in feaces of the Egyptian fruit bat: Description of B. vespertilionis sp. nov. and B. rousetti sp. nov. Syst. Appl. Microbiol. 2019;42:126017. doi: 10.1016/j.syapm.2019.126017. PubMed DOI

Eckel V.P.L., Ziegler L.M., Vogel R.F., Ehrmann M. Bifidobacterium tibiigranuli sp. nov. isolated from homemade water kefir. Int. J. Syst. Evol. Microbiol. 2020;70:1562–1570. doi: 10.1099/ijsem.0.003936. PubMed DOI

Duranti S., Lugli G.A., Viappiani A., Mancabelli L., Alessandri G., Anzalone R., Longhi G., Milani C., Ossiprandi M.C., Turroni F., et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. nov. and Bifidobacterium leontopitheci sp. nov. Int. J. Syst. Evol. Microbiol. 2020;70:2288–2297. doi: 10.1099/ijsem.0.004032. PubMed DOI

Neuzil-Bunesova V., Lugli G.A., Modrackova N., Makovska M., Mrazek J., Mekadim C., Musilova S., Svobodova I., Spanek R., Ventura M., et al. Bifidobacterium canis sp. nov., a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris) Int. J. Syst. Evol. Microbiol. 2020 doi: 10.1099/ijsem.0.004378. PubMed DOI

Modesto M., Satti M., Watanabe K., Scarafile D., Huang C.H., Liou J.S., Tamura T., Saito S., Watanabe M., Mori K., et al. Phylogenetic characterization of two novel species of the genus Bifidobacterium: Bifidobacterium saimiriisciurei sp. nov. and Bifidobacterium platyrrhinorum sp. nov. Syst. Appl. Microbiol. 2020;43:126111. doi: 10.1016/j.syapm.2020.126111. PubMed DOI

Modesto M., Biavati B., Mattarelli P. Occurrence of the family bifidobacteriaceae in human dental caries and plaque. Caries Res. 2006;40:271–276. doi: 10.1159/000092237. PubMed DOI

Mantzourani M., Fenlon M., Beighton D. Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microbiol. Immunol. 2009;24:32–37. doi: 10.1111/j.1399-302X.2008.00470.x. PubMed DOI

Mantzourani M., Gilbert S.C., Fenlon M., Beighton D. Non-oral bifidobacteria and the aciduric microbiota of the denture plaque biofilm. Mol. Oral Microbiol. 2010;25:190–199. doi: 10.1111/j.2041-1014.2009.00565.x. PubMed DOI

Ventura M., Turroni F., Zomer A., Foroni E., Giubellini V., Bottacini F., Canchaya C., Claesson M.J., He F., Mantzourani M., et al. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet. 2009;5:e1000785. doi: 10.1371/journal.pgen.1000785. PubMed DOI PMC

Henne K., Rheinberg A., Melzer-Krick B., Conrads G. Aciduric microbial taxa including Scardovia wiggsiae and Bifidobacterium spp. in caries and caries free subjects. Anaerobe. 2015;35:60–65. doi: 10.1016/j.anaerobe.2015.04.011. PubMed DOI

Neves B.G., Stipp R.N., Bezerra D.D.S., Guedes S.F.F., Rodrigues L.K.A. Quantitative analysis of biofilm bacteria according to different stages of early childhood caries. Arch. Oral Biol. 2018;96:155–161. doi: 10.1016/j.archoralbio.2018.09.007. PubMed DOI

Milani C., Mangifesta M., Mancabelli L., Lugli G.A., James K., Duranti S., Turroni F., Ferrario C., Ossiprandi M.C., van Sinderen D., et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. Isme J. 2017;11:2834–2847. doi: 10.1038/ismej.2017.138. PubMed DOI PMC

Duranti S., Milani C., Lugli G.A., Turroni F., Mancabelli L., Sanchez B., Ferrario C., Viappiani A., Mangifesta M., Mancino W., et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ. Microbiol. 2015;17:2515–2531. doi: 10.1111/1462-2920.12743. PubMed DOI

Duranti S., Milani C., Lugli G.A., Mancabelli L., Turroni F., Ferrario C., Mangifesta M., Viappiani A., Sanchez B., Margolles A., et al. Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci. Rep. 2016;6:23971. doi: 10.1038/srep23971. PubMed DOI PMC

O’Callaghan A., Bottacini F., O’Connell Motherway M., van Sinderen D. Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. Bmc Genom. 2015;16:832. doi: 10.1186/s12864-015-1968-4. PubMed DOI PMC

Lugli G.A., Duranti S., Albert K., Mancabelli L., Napoli S., Viappiani A., Anzalone R., Longhi G., Milani C., Turroni F., et al. Unveiling Genomic Diversity among Members of the Species Bifidobacterium pseudolongum, a Widely Distributed Gut Commensal of the Animal Kingdom. Appl. Environ. Microbiol. 2019;85 doi: 10.1128/AEM.03065-18. PubMed DOI PMC

Ventura M., Zink R., Fitzgerald G.F., van Sinderen D. Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and application of the operon in bifidobacterial tracing. Appl. Environ. Microbiol. 2005;71:487–500. doi: 10.1128/AEM.71.1.487-500.2005. PubMed DOI PMC

Strandwitz P., Kim K.H., Terekhova D., Liu J.K., Sharma A., Levering J., McDonald D., Dietrich D., Ramadhar T.R., Lekbua A., et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 2019;4:396–403. doi: 10.1038/s41564-018-0307-3. PubMed DOI PMC

Duranti S., Ruiz L., Lugli G.A., Tames H., Milani C., Mancabelli L., Mancino W., Longhi G., Carnevali L., Sgoifo A., et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci. Rep. 2020;10:14112. doi: 10.1038/s41598-020-70986-z. PubMed DOI PMC

Pokusaeva K., Johnson C., Luk B., Uribe G., Fu Y., Oezguen N., Matsunami R.K., Lugo M., Major A., Mori-Akiyama Y., et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2017;29 doi: 10.1111/nmo.12904. PubMed DOI PMC

Engevik M.A., Luk B., Chang-Graham A.L., Hall A., Herrmann B., Ruan W., Endres B.T., Shi Z., Garey K.W., Hyser J.M., et al. Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio. 2019;10 doi: 10.1128/mBio.01087-19. PubMed DOI PMC

Turroni F., Marchesi J.R., Foroni E., Gueimonde M., Shanahan F., Margolles A., van Sinderen D., Ventura M. Microbiomic analysis of the bifidobacterial population in the human distal gut. Isme J. 2009;3:745–751. doi: 10.1038/ismej.2009.19. PubMed DOI

Milani C., Lugli G.A., Turroni F., Mancabelli L., Duranti S., Viappiani A., Mangifesta M., Segata N., van Sinderen D., Ventura M. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. Fems Microbiol. Ecol. 2014;90:493–503. doi: 10.1111/1574-6941.12410. PubMed DOI

Lugli G.A., Milani C., Mancabelli L., van Sinderen D., Ventura M. MEGAnnotator: A user-friendly pipeline for microbial genomes assembly and annotation. Fems Microbiol. Lett. 2016;363 doi: 10.1093/femsle/fnw049. PubMed DOI

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Hyatt D., Chen G.L., Locascio P.F., Land M.L., Larimer F.W., Hauser L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC

Zhao Y., Tang H., Ye Y. RAPSearch2: A fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics. 2012;28:125–126. doi: 10.1093/bioinformatics/btr595. PubMed DOI PMC

Lowe T.M., Eddy S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. doi: 10.1093/nar/25.5.955. PubMed DOI PMC

Lagesen K., Hallin P., Rodland E.A., Staerfeldt H.H., Rognes T., Ussery D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC

Brooks L., Kaze M., Sistrom M. A Curated, Comprehensive Database of Plasmid Sequences. Microbiol. Resour. Announc. 2019;8 doi: 10.1128/MRA.01325-18. PubMed DOI PMC

Arredondo-Alonso S., Rogers M.R.C., Braat J.C., Verschuuren T.D., Top J., Corander J., Willems R.J.L., Schurch A.C. mlplasmids: A user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb. Genom. 2018;4 doi: 10.1099/mgen.0.000224. PubMed DOI PMC

Zhao Y., Wu J., Yang J., Sun S., Xiao J., Yu J. PGAP: Pan-genomes analysis pipeline. Bioinformatics. 2012;28:416–418. doi: 10.1093/bioinformatics/btr655. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Vlietstra W.J., Zielman R., van Dongen R.M., Schultes E.A., Wiesman F., Vos R., van Mulligen E.M., Kors J.A. Automated extraction of potential migraine biomarkers using a semantic graph. J. Biomed. Inf. 2017;71:178–189. doi: 10.1016/j.jbi.2017.05.018. PubMed DOI

Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Chenna R., Sugawara H., Koike T., Lopez R., Gibson T.J., Higgins D.G., Thompson J.D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003;31:3497–3500. doi: 10.1093/nar/gkg500. PubMed DOI PMC

Jain C., Rodriguez R.L., Phillippy A.M., Konstantinidis K.T., Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018;9:5114. doi: 10.1038/s41467-018-07641-9. PubMed DOI PMC

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC

Wheeler T.J., Eddy S.R. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29:2487–2489. doi: 10.1093/bioinformatics/btt403. PubMed DOI PMC

Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., Busk P.K., Xu Y., Yin Y. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101. doi: 10.1093/nar/gky418. PubMed DOI PMC

Roberts R.J., Vincze T., Posfai J., Macelis D. REBASE—A database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res. 2015;43:D298–D299. doi: 10.1093/nar/gku1046. PubMed DOI PMC

Couvin D., Bernheim A., Toffano-Nioche C., Touchon M., Michalik J., Neron B., Rocha E.P.C., Vergnaud G., Gautheret D., Pourcel C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–W251. doi: 10.1093/nar/gky425. PubMed DOI PMC

Waack S., Keller O., Asper R., Brodag T., Damm C., Fricke W.F., Surovcik K., Meinicke P., Merkl R. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinform. 2006;7:142. doi: 10.1186/1471-2105-7-142. PubMed DOI PMC

Milani C., Lugli G.A., Duranti S., Turroni F., Bottacini F., Mangifesta M., Sanchez B., Viappiani A., Mancabelli L., Taminiau B., et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 2014;80:6290–6302. doi: 10.1128/AEM.02308-14. PubMed DOI PMC

Lugli G.A., Milani C., Turroni F., Tremblay D., Ferrario C., Mancabelli L., Duranti S., Ward D.V., Ossiprandi M.C., Moineau S., et al. Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota. Environ. Microbiol. 2016;18:2196–2213. doi: 10.1111/1462-2920.13154. PubMed DOI

Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

Lakin S.M., Dean C., Noyes N.R., Dettenwanger A., Ross A.S., Doster E., Rovira P., Abdo Z., Jones K.L., Ruiz J., et al. MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 2017;45:D574–D580. doi: 10.1093/nar/gkw1009. PubMed DOI PMC

Van Heel A.J., de Jong A., Montalban-Lopez M., Kok J., Kuipers O.P. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013;41:W448–W453. doi: 10.1093/nar/gkt391. PubMed DOI PMC

Xie Y., Wei Y., Shen Y., Li X., Zhou H., Tai C., Deng Z., Ou H.Y. TADB 2.0: An updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res. 2018;46:D749–D753. doi: 10.1093/nar/gkx1033. PubMed DOI PMC

Saeed A.I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M., et al. TM4: A free, open-source system for microarray data management and analysis. BioTechniques. 2003;34:374–378. doi: 10.2144/03342mt01. PubMed DOI

Tettelin H., Masignani V., Cieslewicz M.J., Donati C., Medini D., Ward N.L., Angiuoli S.V., Crabtree J., Jones A.L., Durkin A.S., et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pan-genome". Proc. Natl. Acad. Sci. USA. 2005;102:13950–13955. doi: 10.1073/pnas.0506758102. PubMed DOI PMC

Albert K., Rani A., Sela D.A. Comparative Pangenomics of the Mammalian Gut Commensal Bifidobacterium longum. Microorganisms. 2019;8:7. doi: 10.3390/microorganisms8010007. PubMed DOI PMC

Bottacini F., O’Connell Motherway M., Kuczynski J., O’Connell K.J., Serafini F., Duranti S., Milani C., Turroni F., Lugli G.A., Zomer A., et al. Comparative genomics of the Bifidobacterium breve taxon. BMC Genom. 2014;15:170. doi: 10.1186/1471-2164-15-170. PubMed DOI PMC

Lugli G.A., Milani C., Turroni F., Duranti S., Mancabelli L., Mangifesta M., Ferrario C., Modesto M., Mattarelli P., Jiri K., et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genom. 2017;18:568. doi: 10.1186/s12864-017-3955-4. PubMed DOI PMC

Lugli G.A., Milani C., Turroni F., Duranti S., Ferrario C., Viappiani A., Mancabelli L., Mangifesta M., Taminiau B., Delcenserie V., et al. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl. Environ. Microbiol. 2014;80:6383–6394. doi: 10.1128/AEM.02004-14. PubMed DOI PMC

Richter M., Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA. 2009;106:19126–19131. doi: 10.1073/pnas.0906412106. PubMed DOI PMC

Milani C., Lugli G.A., Duranti S., Turroni F., Mancabelli L., Ferrario C., Mangifesta M., Hevia A., Viappiani A., Scholz M., et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci. Rep. 2015;5:15782. doi: 10.1038/srep15782. PubMed DOI PMC

Botstein D. A theory of modular evolution for bacteriophages. Ann. N.Y. Acad. Sci. 1980;354:484–490. doi: 10.1111/j.1749-6632.1980.tb27987.x. PubMed DOI

Bernheim A., Sorek R. The pan-immune system of bacteria: Antiviral defence as a community resource. Nat. Rev. Microbiol. 2020;18:113–119. doi: 10.1038/s41579-019-0278-2. PubMed DOI

Briner A.E., Lugli G.A., Milani C., Duranti S., Turroni F., Gueimonde M., Margolles A., van Sinderen D., Ventura M., Barrangou R. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium. PLoS ONE. 2015;10:e0133661. doi: 10.1371/journal.pone.0133661. PubMed DOI PMC

Ershova A.S., Rusinov I.S., Spirin S.A., Karyagina A.S., Alexeevski A.V. Role of Restriction-Modification Systems in Prokaryotic Evolution and Ecology. Biochemistry (Moscow) 2015;80:1373–1386. doi: 10.1134/S0006297915100193. PubMed DOI

Duranti S., Lugli G.A., Mancabelli L., Turroni F., Milani C., Mangifesta M., Ferrario C., Anzalone R., Viappiani A., van Sinderen D., et al. Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria. Appl. Environ. Microbiol. 2017;83 doi: 10.1128/AEM.02894-16. PubMed DOI PMC

Mancino W., Lugli G.A., Sinderen D.V., Ventura M., Turroni F. Mobilome and Resistome Reconstruction from Genomes Belonging to Members of the Bifidobacterium Genus. Microorganisms. 2019;7:638. doi: 10.3390/microorganisms7120638. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...