Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31000703
PubMed Central
PMC6472409
DOI
10.1038/s41467-019-09651-7
PII: 10.1038/s41467-019-09651-7
Knihovny.cz E-zdroje
- MeSH
- analýza jednotlivých buněk metody MeSH
- biosenzitivní techniky MeSH
- enzymatické testy metody MeSH
- fluorescenční mikroskopie metody MeSH
- fosforylace fyziologie MeSH
- frizzled receptory metabolismus MeSH
- genový knockout MeSH
- HEK293 buňky MeSH
- kasein kinasa 1 epsilon genetika metabolismus MeSH
- lidé MeSH
- mutageneze cílená MeSH
- oocyty MeSH
- PDZ domény fyziologie MeSH
- protein dishevelled genetika metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- signální dráha Wnt fyziologie MeSH
- simulace molekulární dynamiky MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DVL3 protein, human MeSH Prohlížeč
- frizzled receptory MeSH
- FZD6 protein, human MeSH Prohlížeč
- kasein kinasa 1 epsilon MeSH
- protein dishevelled MeSH
Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.
CEITEC Central European Institute of Technology Masaryk University Brno 62500 Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno 62500 Czech Republic
Department of Pharmacology and Toxicology University of Würzburg Würzburg 97078 Germany
Institute of Biophysics Academy of Sciences of the Czech Republic v v i Brno 612 65 Czech Republic
Max Planck Institute for the Science of Light Erlangen 91058 Germany
Pepscan Therapeutics B 5 Lelystad 8243 The Netherlands
Rudolf Virchow Center for Experimental Biomedicine University of Würzburg Würzburg 97078 Germany
Zobrazit více v PubMed
Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–480. doi: 10.1016/j.cell.2006.10.018. PubMed DOI
Gao C, Chen YG. Dishevelled: the hub of Wnt signaling. Cell. Signal. 2010;22:717–727. doi: 10.1016/j.cellsig.2009.11.021. PubMed DOI
Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development. 2005;132:4421–4436. doi: 10.1242/dev.02068. PubMed DOI
Mlodzik M. The Dishevelled protein family: still rather a mystery after over 20 years of molecular studies. Curr. Top. Dev. Biol. 2016;117:75–91. doi: 10.1016/bs.ctdb.2015.11.027. PubMed DOI PMC
Gentzel M, Schambony A. Dishevelled paralogs in vertebrate development: redundant or distinct? Front. Cell Dev. Biol. 2017;5:59. doi: 10.3389/fcell.2017.00059. PubMed DOI PMC
Wynshaw-Boris A. Dishevelled: in vivo roles of a multifunctional gene family during development. Curr. Top. Dev. Biol. 2012;101:213–235. doi: 10.1016/B978-0-12-394592-1.00007-7. PubMed DOI
Madrzak J, et al. Ubiquitination of the Dishevelled DIX domain blocks its head-to-tail polymerization. Nat. Commun. 2015;6:6718. doi: 10.1038/ncomms7718. PubMed DOI PMC
Cheyette BN, et al. Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev. Cell. 2002;2:449–461. doi: 10.1016/S1534-5807(02)00140-5. PubMed DOI
Wong HC, et al. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat. Struct. Biol. 2000;7:1178–1184. doi: 10.1038/82047. PubMed DOI PMC
Schwarz-Romond T, et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Struct. Mol. Biol. 2007;14:484–492. doi: 10.1038/nsmb1247. PubMed DOI
Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating beta-catenin. Proc. Natl. Acad. Sci. USA. 2011;108:1937–1942. doi: 10.1073/pnas.1017063108. PubMed DOI PMC
Schwarz-Romond T, Metcalfe C, Bienz M. Dynamic recruitment of axin by Dishevelled protein assemblies. J. Cell Sci. 2007;120:2402–2412. doi: 10.1242/jcs.002956. PubMed DOI
Bilic J, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316:1619–1622. doi: 10.1126/science.1137065. PubMed DOI
Gammons MV, Renko M, Johnson CM, Rutherford TJ, Bienz M. Wnt signalosome assembly by DEP domain swapping of Dishevelled. Mol. Cell. 2016;64:92–104. doi: 10.1016/j.molcel.2016.08.026. PubMed DOI PMC
Smietana K, Mateja A, Krezel A, Otlewski J. PDZ domain from Dishevelled—a specificity study. Acta Biochim. Pol. 2011;58:243–249. doi: 10.18388/abp.2011_2272. PubMed DOI
Lee HJ, Shi DL, Zheng JJ. Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways. eLife. 2015;4:e08142. doi: 10.7554/eLife.08142. PubMed DOI PMC
Qi J, et al. Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/beta-catenin and Wnt/planar cell polarity (PCP) signaling pathways. J. Biol. Chem. 2017;292:5898–5908. doi: 10.1074/jbc.M116.772509. PubMed DOI PMC
Hoffmann C, et al. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat. Methods. 2005;2:171–176. doi: 10.1038/nmeth742. PubMed DOI
Hoffmann C, et al. Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat. Protoc. 2010;5:1666–1677. doi: 10.1038/nprot.2010.129. PubMed DOI PMC
Nuber S, et al. beta-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature. 2016;531:661–664. doi: 10.1038/nature17198. PubMed DOI PMC
Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta. 2010;1804:996–1010. doi: 10.1016/j.bbapap.2010.01.011. PubMed DOI PMC
Paclikova, P., Bernatik, O., Radaszkiewicz, T. W. & Bryja, V. N-terminal part of Dishevelled DEP domain is required for Wnt/beta-catenin signaling in mammalian cells. Mol. Cell Biol.10.1128/MCB.00145-17 (2017). PubMed PMC
Yanagawa S, van Leeuwen F, Wodarz A, Klingensmith J, Nusse R. The dishevelled protein is modified by wingless signaling in Drosophila. Gene Dev. 1995;9:1087–1097. doi: 10.1101/gad.9.9.1087. PubMed DOI
Bryja V, Schulte G, Rawal N, Grahn A, Arenas E. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J. Cell Sci. 2007;120:586–595. doi: 10.1242/jcs.03368. PubMed DOI
Rothbacher U, et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J. 2000;19:1010–1022. doi: 10.1093/emboj/19.5.1010. PubMed DOI PMC
Gonzalez-Sancho JM, et al. Functional consequences of Wnt-induced Dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. J. Biol. Chem. 2013;288:9428–9437. doi: 10.1074/jbc.M112.448480. PubMed DOI PMC
Bryja V, Schulte G, Arenas E. Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate beta-catenin. Cell. Signal. 2007;19:610–616. doi: 10.1016/j.cellsig.2006.08.011. PubMed DOI
Bernatik O, et al. Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases. J. Biol. Chem. 2011;286:10396–10410. doi: 10.1074/jbc.M110.169870. PubMed DOI PMC
Bernatik O, et al. Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1 and frizzled5. J. Biol. Chem. 2014;289:23520–23533. doi: 10.1074/jbc.M114.590638. PubMed DOI PMC
Kaucka M, et al. Asymmetry of VANGL2 in migrating lymphocytes as a tool to monitor activity of the mammalian WNT/planar cell polarity pathway. Cell Commun. Signal. 2015;13:2. doi: 10.1186/s12964-014-0079-1. PubMed DOI PMC
Cong F, Schweizer L, Varmus H. Casein kinase Iepsilon modulates the signaling specificities of dishevelled. Mol. Cell. Biol. 2004;24:2000–2011. doi: 10.1128/MCB.24.5.2000-2011.2004. PubMed DOI PMC
Xue B, Dunker AK, Uversky VN. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Int. J. Mol. Sci. 2010;11:3725–3747. doi: 10.3390/ijms11103725. PubMed DOI PMC
Foldynova-Trantirkova S, et al. Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Res. 2010;12:R30. doi: 10.1186/bcr2581. PubMed DOI PMC
Luck K, Charbonnier S, Trave G. The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett. 2012;586:2648–2661. doi: 10.1016/j.febslet.2012.03.056. PubMed DOI
Mostarda S, Gfeller D, Rao F. Beyond the binding site: the role of the beta(2)-beta(3) loop and extra-domain structures in PDZ domains. PLoS Comput. Biol. 2012;8:e1002429. doi: 10.1371/journal.pcbi.1002429. PubMed DOI PMC
Zhang J, et al. Structural basis of beta-catenin recognition by Tax-interacting protein-1. J. Mol. Biol. 2008;384:255–263. doi: 10.1016/j.jmb.2008.09.034. PubMed DOI
Strakova Katerina, Kowalski-Jahn Maria, Gybel Tomas, Valnohova Jana, Dhople Vishnu M., Harnos Jakub, Bernatik Ondrej, Ganji Ranjani Sri, Zdrahal Zbynek, Mulder Jan, Lindskog Cecilia, Bryja Vitezslav, Schulte Gunnar. Dishevelled enables casein kinase 1–mediated phosphorylation of Frizzled 6 required for cell membrane localization. Journal of Biological Chemistry. 2018;293(48):18477–18493. doi: 10.1074/jbc.RA118.004656. PubMed DOI PMC
Jung H, et al. Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis. 2013;2:e64. doi: 10.1038/oncsis.2013.28. PubMed DOI PMC
Kishida M, et al. Synergistic activation of the Wnt signaling pathway by Dvl and casein kinase Iepsilon. J. Biol. Chem. 2001;276:33147–33155. doi: 10.1074/jbc.M103555200. PubMed DOI
Rauch J, Volinsky N, Romano D, Kolch W. The secret life of kinases: functions beyond catalysis. Cell Commun. Signal. 2011;9:23. doi: 10.1186/1478-811X-9-23. PubMed DOI PMC
Klein TJ, Jenny A, Djiane A, Mlodzik M. CKIepsilon/discs overgrown promotes both Wnt-Fz/beta-catenin and Fz/PCP signaling in Drosophila. Curr. Biol. 2006;16:1337–1343. doi: 10.1016/j.cub.2006.06.030. PubMed DOI
Wong HC, et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of frizzled. Mol. Cell. 2003;12:1251–1260. doi: 10.1016/S1097-2765(03)00427-1. PubMed DOI PMC
Punchihewa C, Ferreira AM, Cassell R, Rodrigues P, Fujii N. Sequence requirement and subtype specificity in the high-affinity interaction between human frizzled and dishevelled proteins. Protein Sci. 2009;18:994–1002. doi: 10.1002/pro.109. PubMed DOI PMC
Witte F, et al. Negative regulation of Wnt signaling mediated by CK1-phosphorylated Dishevelled via Ror2. FASEB J. 2010;24:2417–2426. doi: 10.1096/fj.09-150615. PubMed DOI
Funato Y, et al. Nucleoredoxin sustains Wnt/beta-catenin signaling by retaining a pool of inactive dishevelled protein. Curr. Biol. 2010;20:1945–1952. doi: 10.1016/j.cub.2010.09.065. PubMed DOI
Funato Y, Michiue T, Asashima M, Miki H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Nat. Cell Biol. 2006;8:501–U135. doi: 10.1038/ncb1405. PubMed DOI
Angers S, et al. The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat. Cell Biol. 2006;8:348–357. doi: 10.1038/ncb1381. PubMed DOI
McKay RM, Peters JM, Graff JM. The casein kinase I family in Wnt signaling. Dev. Biol. 2001;235:388–396. doi: 10.1006/dbio.2001.0308. PubMed DOI
Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Chu VT, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 2015;33:543–548. doi: 10.1038/nbt.3198. PubMed DOI
Bryja V, et al. Increased apoptosis in differentiating p27-deficient mouse embryonic stem cells. Cell. Mol. Life Sci. 2004;61:1384–1400. doi: 10.1007/s00018-004-4081-4. PubMed DOI PMC
Cervenka I, et al. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proc. Natl. Acad. Sci. USA. 2016;113:9304–9309. doi: 10.1073/pnas.1608783113. PubMed DOI PMC
Nieuwkoop, P. D. & Faber Garland, J. Normal table of Xenopus laevis (Garland Publishing Inc, New York, 1994).
Gentzel M, Schille C, Rauschenberger V, Schambony A. Distinct functionality of dishevelled isoforms on Ca2+/calmodulin-dependent protein kinase 2 (CamKII) in Xenopus gastrulation. Mol. Biol. Cell. 2015;26:966–977. doi: 10.1091/mbc.E14-06-1089. PubMed DOI PMC
Bryja V, et al. Beta-arrestin and casein kinase 1/2 define distinct branches of non-canonical WNT signalling pathways. EMBO Rep. 2008;9:1244–1250. doi: 10.1038/embor.2008.193. PubMed DOI PMC
Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse MJ. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat. Biotechnol. 2003;21:807–812. doi: 10.1038/nbt838. PubMed DOI
Jost CA, Reither G, Hoffmann C, Schultz C. Contribution of fluorophores to protein kinase C FRET probe performance. Chembiochem. 2008;9:1379–1384. doi: 10.1002/cbic.200700728. PubMed DOI
Stejskal K, Potesil D, Zdrahal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI
Stanek J, Augustyniak R, Kozminski W. Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J. Magn. Reson. 2012;214:91–102. doi: 10.1016/j.jmr.2011.10.009. PubMed DOI
Evangelidis T, et al. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra. Nat. Commun. 2018;9:384. doi: 10.1038/s41467-017-02592-z. PubMed DOI PMC
Pronk S, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC
Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Fiser A, Sali A. MODELLER: Generation and refinement of homology-based protein structure models. Methods Enzymol. 2003;374:461–491. doi: 10.1016/S0076-6879(03)74020-8. PubMed DOI
Fiser A, Do RKG, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9:1753–1773. doi: 10.1110/ps.9.9.1753. PubMed DOI PMC
Bereau T, Deserno M. Generic coarse-grained model for protein folding and aggregation. J. Chem. Phys. 2009;130:235106. doi: 10.1063/1.3152842. PubMed DOI PMC
Lindorff-Larsen K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. PubMed PMC
Homeyer N, Horn AH, Lanig H, Sticht H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model. 2006;12:281–289. doi: 10.1007/s00894-005-0028-4. PubMed DOI
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Best RB, Zheng WW, Mittal J. Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. J. Chem. Theory Comput. 2014;10:5113–5124. doi: 10.1021/ct500569b. PubMed DOI PMC
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys.126, 014101 (2007). PubMed
Parrinello M, Rahman A. Polymorphic transitions in single-crystals—a new molecular-dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Nose S, Klein ML. Constant pressure molecular-dynamics for molecular-systems. Mol. Phys. 1983;50:1055–1076. doi: 10.1080/00268978300102851. DOI
Darden T, York D, Pedersen L. Particle Mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Essmann U, et al. A smooth particle Mesh Ewald Method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Endogenous oligomer formation underlies DVL2 condensates and promotes Wnt/β-catenin signaling
Linking planar polarity signalling to actomyosin contractility during vertebrate neurulation
Can We Pharmacologically Target Dishevelled: The Key Signal Transducer in the Wnt Pathways?
Phosphorylation-induced changes in the PDZ domain of Dishevelled 3
Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs