Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
K22 AI112573
NIAID NIH HHS - United States
R01 GM083136
NIGMS NIH HHS - United States
R35 GM125034
NIGMS NIH HHS - United States
S10 OD018455
NIH HHS - United States
PubMed
29374165
PubMed Central
PMC5786013
DOI
10.1038/s41467-017-02592-z
PII: 10.1038/s41467-017-02592-z
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- bakteriální proteiny chemie MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- molekulární modely MeSH
- nukleární magnetická rezonance biomolekulární metody MeSH
- Thermoanaerobacter chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- bakteriální proteiny MeSH
Automated methods for NMR structure determination of proteins are continuously becoming more robust. However, current methods addressing larger, more complex targets rely on analyzing 6-10 complementary spectra, suggesting the need for alternative approaches. Here, we describe 4D-CHAINS/autoNOE-Rosetta, a complete pipeline for NOE-driven structure determination of medium- to larger-sized proteins. The 4D-CHAINS algorithm analyzes two 4D spectra recorded using a single, fully protonated protein sample in an iterative ansatz where common NOEs between different spin systems supplement conventional through-bond connectivities to establish assignments of sidechain and backbone resonances at high levels of completeness and with a minimum error rate. The 4D-CHAINS assignments are then used to guide automated assignment of long-range NOEs and structure refinement in autoNOE-Rosetta. Our results on four targets ranging in size from 15.5 to 27.3 kDa illustrate that the structures of proteins can be determined accurately and in an unsupervised manner in a matter of days.
Department of Chemistry and Biochemistry University of California Santa Cruz Santa Cruz CA 95064 USA
Department of Chemistry Iowa State University 2438 Pammel Drive Ames IA 50011 USA
Department of Computer Science University of California Santa Cruz Santa Cruz CA 95064 USA
Zobrazit více v PubMed
Wüthrich, K. NMR of Proteins and Nucleic Acids. (Wiley: New York, 1986).
Ikura M, Kay L, Bax A. A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to Calmodulin. Biochemistry. 1990;29:4659–4667. doi: 10.1021/bi00471a022. PubMed DOI
Kay LE, Ikura M, Tschudin R, Bax A. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 1990;89:496–514. PubMed
Güntert P. Automated structure determination from NMR spectra. Eur. Biophys. J. 2009;38:129–143. doi: 10.1007/s00249-008-0367-z. PubMed DOI
Schmidt E, Güntert P. A new algorithm for reliable and general NMR resonance assignment. J. Am. Chem. Soc. 2012;134:12817–12829. doi: 10.1021/ja305091n. PubMed DOI
Bahrami A, Assadi AH, Markley JL, Eghbalnia HR. Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput. Biol. 2009;5:e1000307. doi: 10.1371/journal.pcbi.1000307. PubMed DOI PMC
Guerry P, Duong V, Herrmann T. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO. J. Biomol. NMR. 2015;62:473–480. doi: 10.1007/s10858-015-9934-7. PubMed DOI
Kay L, Clore G, Bax A, Gronenborn A. Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution. Science. 1990;249:411–414. doi: 10.1126/science.2377896. PubMed DOI
Kazimierczuk K, Orekhov V. Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn. Reson. Chem. 2015;53:921–926. doi: 10.1002/mrc.4284. PubMed DOI
Trautwein M, Fredriksson K, Moller HM, Exner T. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra. J. Biomol. NMR. 2016;65:217–236. doi: 10.1007/s10858-016-0050-0. PubMed DOI
Pritišanac I, et al. Automatic assignment of methyl-NMR spectra of supramolecular machines using graph theory. J. Am. Chem. Soc. 2017;139:9523–9533. doi: 10.1021/jacs.6b11358. PubMed DOI
Shen Y, et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA. 2008;105:4685–4690. doi: 10.1073/pnas.0800256105. PubMed DOI PMC
Cavalli A, Salvatella X, Dobson CM, Vendruscolo M. Protein structure determination from NMR chemical shifts. Proc. Natl. Acad. Sci. USA. 2007;104:9615–9620. doi: 10.1073/pnas.0610313104. PubMed DOI PMC
Raman S, et al. NMR structure determination for larger proteins using backbone-only data. Science. 2012;327:1014–1018. doi: 10.1126/science.1183649. PubMed DOI PMC
Lange OF, et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc. Natl. Acad. Sci. USA. 2012;109:10873–10878. doi: 10.1073/pnas.1203013109. PubMed DOI PMC
Thompson JM, et al. Accurate protein structure modeling using sparse NMR data and homologous structure information. Proc. Natl. Acad. Sci. USA. 2012;109:9875–9880. doi: 10.1073/pnas.1202485109. PubMed DOI PMC
Shen Y, Bax A. Homology modeling of larger proteins guided by chemical shifts. Nat. Methods. 2015;12:747–750. doi: 10.1038/nmeth.3437. PubMed DOI PMC
Tang Y, et al. Protein structure determination by combining sparse NMR data with evolutionary couplings. Nat. Methods. 2015;12:751–754. doi: 10.1038/nmeth.3455. PubMed DOI PMC
Lange OF. Automatic NOESY assignment in CS-RASREC-Rosetta. J. Biomol. NMR. 2014;59:147–159. doi: 10.1007/s10858-014-9833-3. PubMed DOI
Zhang Z, Porter J, Tripsianes K, Lange OF. Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta. J. Biomol. NMR. 2014;59:135–145. doi: 10.1007/s10858-014-9832-4. PubMed DOI
Xu Y, Zheng Y, Fan J, Yang D. A new strategy for structure determination of large proteins in solution without deuteration. Nat. Methods. 2006;3:931–937. doi: 10.1038/nmeth938. PubMed DOI
Li Z, et al. Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief. Funct. Genom. 2012;11:25–37. doi: 10.1093/bfgp/elr035. PubMed DOI
Berman HM, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
O’Meara MJ, et al. Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J. Chem. Theory Comput. 2015;11:609–622. doi: 10.1021/ct500864r. PubMed DOI PMC
Clark SA, Tronrud DE, Karplus PA. Residue-level global and local ensemble-ensemble comparisons of protein domains. Protein Sci. 2015;24:1528–1542. doi: 10.1002/pro.2714. PubMed DOI PMC
Brereton AE, Karplus PA. Ensemblator v3: Robust atom-level comparative analyses and classification of protein structure ensembles. Protein Sci. 2018;27:41–50. doi: 10.1002/pro.3249. PubMed DOI PMC
Güntert P, Buchner L. Combined automated NOE assignment and structure calculation with CYANA. J. Biomol. NMR. 2015;62:453–471. doi: 10.1007/s10858-015-9924-9. PubMed DOI
Monzon, A.M., Rohr, C.O., Fornasari, M.S. & Parisi, G. CoDNaS 2.0: a comprehensive database of protein conformational diversity in the native state. J. Biol. Databases Curation. 10.1093/database/baw038 (2016). PubMed PMC
Jasnovidova O, Krejcikova M, Kubicek K, Stefl R. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by Rtt103p. EMBO Rep. 2017;18:906–913. doi: 10.15252/embr.201643723. PubMed DOI PMC
Jasnovidova O, et al. Structure and dynamics of the RNAPII CTDsome with Rtt103. Proc. Natl. Acad. Sci. USA. 2017;114:11133–11138. doi: 10.1073/pnas.1712450114. PubMed DOI PMC
Frueh DP. Practical aspects of NMR signal assignment in larger and challenging proteins. Prog. Nucl. Magn. Reson. Spectrosc. 2014;78:47–75. doi: 10.1016/j.pnmrs.2013.12.001. PubMed DOI PMC
Kainosho M, et al. Optimal isotope labelling for NMR protein structure determinations. Nature. 2006;440:52–57. doi: 10.1038/nature04525. PubMed DOI
Tugarinov V, Kanelis V, Kay LE. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 2006;1:749–754. doi: 10.1038/nprot.2006.101. PubMed DOI
Vinarov DA, Markley JL. High-throughput automated platform for nuclear magnetic resonance–based structural proteomics. Expert. Rev. Proteom. 2005;2:49–55. doi: 10.1586/14789450.2.1.49. PubMed DOI
Dias DM, Ciulli A. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog. Biophys. Mol. Biol. 2014;116:101–112. doi: 10.1016/j.pbiomolbio.2014.08.012. PubMed DOI PMC
Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I. Random sampling of evolution time space and Fourier transform processing. J. Biomol. NMR. 2006;36:157–168. doi: 10.1007/s10858-006-9077-y. PubMed DOI
Stanek J, Augustyniak R, Koźmiński W. Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J. Magn. Reson. 2012;214:91–102. doi: 10.1016/j.jmr.2011.10.009. PubMed DOI
Delaglio F, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. Nmr. 1995;6:277–293. doi: 10.1007/BF00197809. PubMed DOI
Goddard TD, Kneller DG. SPARKY 3. San Francisco: University of California, San Francisco; 2000.
Bax A, Kontaxis G, Tjandra N. Dipolar couplings in macromolecular structure determination. Methods Enzymol. 2001;339:127–174. doi: 10.1016/S0076-6879(01)39313-8. PubMed DOI
Hansen MR, Mueller L, Pardi A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Mol. Biol. 1998;5:1065–1074. doi: 10.1038/4176. PubMed DOI
Fitzkee NC, Bax A. Facile measurement of 1H–15N residual dipolar couplings in larger perdeuterated proteins. J. Biomol. NMR. 2010;48:65–70. doi: 10.1007/s10858-010-9441-9. PubMed DOI PMC
Gronwald W, Kalbitzer HR. Automated structure determination of proteins by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2004;44:33–96. doi: 10.1016/j.pnmrs.2003.12.002. DOI
Baran MC, Huang YJ, Moseley HNB, Montelione GT. Automated analysis of protein NMR assignments and structures. Chem. Rev. 2004;104:3541–3556. doi: 10.1021/cr030408p. PubMed DOI
Reiping W, Vranken WF. Validation of archived chemical shifts through atomic coordinates. Proteins. 2010;78:2482–2489. PubMed PMC
Marin A, Malliavin TE, Nicolas P, Delsuc MA. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei. J. Biomol. NMR. 2004;30:47–60. doi: 10.1023/B:JNMR.0000042948.12381.88. PubMed DOI
Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970;48:443–453. doi: 10.1016/0022-2836(70)90057-4. PubMed DOI
Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA. 1992;89:10915–10919. doi: 10.1073/pnas.89.22.10915. PubMed DOI PMC
Hiller S, Joss R, Wider G. Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY) J. Am. Chem. Soc. 2008;130:12073–12079. doi: 10.1021/ja803161d. PubMed DOI
Lange O, Baker D. Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins. 2012;80:884–895. doi: 10.1002/prot.23245. PubMed DOI PMC
Warner LR, et al. Structure of the BamC two-domain protein obtained by Rosetta with a limited NMR data set. J. Mol. Biol. 2011;411:83–95. doi: 10.1016/j.jmb.2011.05.022. PubMed DOI PMC
Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR. 1999;13:289–302. doi: 10.1023/A:1008392405740. PubMed DOI
Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR. 2013;56:227–241. doi: 10.1007/s10858-013-9741-y. PubMed DOI PMC
Gront, D., Kulp, D. W., Vernon, R. M., Strauss, C. E. M. & Baker, D. Generalized fragment picking in Rosetta: design, protocols and applications. PLoS ONE e23294 (2011). PubMed PMC
Nilges M. Ambiguous distance data in the calculation of NMR structures. Fold Des. 1997;2:S53–S57. doi: 10.1016/S1359-0278(97)00064-3. PubMed DOI
Foster MP, McElroy CA, Amero CD. Solution NMR of large molecules and assemblies. Biochem. (Mosc.). 2007;46:331–340. doi: 10.1021/bi0621314. PubMed DOI PMC
Gutmanas A, et al. NMR Exchange Format: a unified and open standard for representation of NMR restraint data. Nat. Struct. Mol. Biol. 2015;22:433–434. doi: 10.1038/nsmb.3041. PubMed DOI PMC
Ulrich EL, et al. BioMagResBank. Nucleic Acids Res. 2008;36:D402–D408. doi: 10.1093/nar/gkm957. PubMed DOI PMC
Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding
Phosphorylation-induced changes in the PDZ domain of Dishevelled 3
Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs
De novo design of a non-local β-sheet protein with high stability and accuracy