Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra

. 2018 Jan 26 ; 9 (1) : 384. [epub] 20180126

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29374165

Grantová podpora
K22 AI112573 NIAID NIH HHS - United States
R01 GM083136 NIGMS NIH HHS - United States
R35 GM125034 NIGMS NIH HHS - United States
S10 OD018455 NIH HHS - United States

Odkazy

PubMed 29374165
PubMed Central PMC5786013
DOI 10.1038/s41467-017-02592-z
PII: 10.1038/s41467-017-02592-z
Knihovny.cz E-zdroje

Automated methods for NMR structure determination of proteins are continuously becoming more robust. However, current methods addressing larger, more complex targets rely on analyzing 6-10 complementary spectra, suggesting the need for alternative approaches. Here, we describe 4D-CHAINS/autoNOE-Rosetta, a complete pipeline for NOE-driven structure determination of medium- to larger-sized proteins. The 4D-CHAINS algorithm analyzes two 4D spectra recorded using a single, fully protonated protein sample in an iterative ansatz where common NOEs between different spin systems supplement conventional through-bond connectivities to establish assignments of sidechain and backbone resonances at high levels of completeness and with a minimum error rate. The 4D-CHAINS assignments are then used to guide automated assignment of long-range NOEs and structure refinement in autoNOE-Rosetta. Our results on four targets ranging in size from 15.5 to 27.3 kDa illustrate that the structures of proteins can be determined accurately and in an unsupervised manner in a matter of days.

Zobrazit více v PubMed

Wüthrich, K. NMR of Proteins and Nucleic Acids. (Wiley: New York, 1986).

Ikura M, Kay L, Bax A. A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to Calmodulin. Biochemistry. 1990;29:4659–4667. doi: 10.1021/bi00471a022. PubMed DOI

Kay LE, Ikura M, Tschudin R, Bax A. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 1990;89:496–514. PubMed

Güntert P. Automated structure determination from NMR spectra. Eur. Biophys. J. 2009;38:129–143. doi: 10.1007/s00249-008-0367-z. PubMed DOI

Schmidt E, Güntert P. A new algorithm for reliable and general NMR resonance assignment. J. Am. Chem. Soc. 2012;134:12817–12829. doi: 10.1021/ja305091n. PubMed DOI

Bahrami A, Assadi AH, Markley JL, Eghbalnia HR. Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput. Biol. 2009;5:e1000307. doi: 10.1371/journal.pcbi.1000307. PubMed DOI PMC

Guerry P, Duong V, Herrmann T. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO. J. Biomol. NMR. 2015;62:473–480. doi: 10.1007/s10858-015-9934-7. PubMed DOI

Kay L, Clore G, Bax A, Gronenborn A. Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution. Science. 1990;249:411–414. doi: 10.1126/science.2377896. PubMed DOI

Kazimierczuk K, Orekhov V. Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn. Reson. Chem. 2015;53:921–926. doi: 10.1002/mrc.4284. PubMed DOI

Trautwein M, Fredriksson K, Moller HM, Exner T. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra. J. Biomol. NMR. 2016;65:217–236. doi: 10.1007/s10858-016-0050-0. PubMed DOI

Pritišanac I, et al. Automatic assignment of methyl-NMR spectra of supramolecular machines using graph theory. J. Am. Chem. Soc. 2017;139:9523–9533. doi: 10.1021/jacs.6b11358. PubMed DOI

Shen Y, et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA. 2008;105:4685–4690. doi: 10.1073/pnas.0800256105. PubMed DOI PMC

Cavalli A, Salvatella X, Dobson CM, Vendruscolo M. Protein structure determination from NMR chemical shifts. Proc. Natl. Acad. Sci. USA. 2007;104:9615–9620. doi: 10.1073/pnas.0610313104. PubMed DOI PMC

Raman S, et al. NMR structure determination for larger proteins using backbone-only data. Science. 2012;327:1014–1018. doi: 10.1126/science.1183649. PubMed DOI PMC

Lange OF, et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc. Natl. Acad. Sci. USA. 2012;109:10873–10878. doi: 10.1073/pnas.1203013109. PubMed DOI PMC

Thompson JM, et al. Accurate protein structure modeling using sparse NMR data and homologous structure information. Proc. Natl. Acad. Sci. USA. 2012;109:9875–9880. doi: 10.1073/pnas.1202485109. PubMed DOI PMC

Shen Y, Bax A. Homology modeling of larger proteins guided by chemical shifts. Nat. Methods. 2015;12:747–750. doi: 10.1038/nmeth.3437. PubMed DOI PMC

Tang Y, et al. Protein structure determination by combining sparse NMR data with evolutionary couplings. Nat. Methods. 2015;12:751–754. doi: 10.1038/nmeth.3455. PubMed DOI PMC

Lange OF. Automatic NOESY assignment in CS-RASREC-Rosetta. J. Biomol. NMR. 2014;59:147–159. doi: 10.1007/s10858-014-9833-3. PubMed DOI

Zhang Z, Porter J, Tripsianes K, Lange OF. Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta. J. Biomol. NMR. 2014;59:135–145. doi: 10.1007/s10858-014-9832-4. PubMed DOI

Xu Y, Zheng Y, Fan J, Yang D. A new strategy for structure determination of large proteins in solution without deuteration. Nat. Methods. 2006;3:931–937. doi: 10.1038/nmeth938. PubMed DOI

Li Z, et al. Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief. Funct. Genom. 2012;11:25–37. doi: 10.1093/bfgp/elr035. PubMed DOI

Berman HM, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

O’Meara MJ, et al. Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J. Chem. Theory Comput. 2015;11:609–622. doi: 10.1021/ct500864r. PubMed DOI PMC

Clark SA, Tronrud DE, Karplus PA. Residue-level global and local ensemble-ensemble comparisons of protein domains. Protein Sci. 2015;24:1528–1542. doi: 10.1002/pro.2714. PubMed DOI PMC

Brereton AE, Karplus PA. Ensemblator v3: Robust atom-level comparative analyses and classification of protein structure ensembles. Protein Sci. 2018;27:41–50. doi: 10.1002/pro.3249. PubMed DOI PMC

Güntert P, Buchner L. Combined automated NOE assignment and structure calculation with CYANA. J. Biomol. NMR. 2015;62:453–471. doi: 10.1007/s10858-015-9924-9. PubMed DOI

Monzon, A.M., Rohr, C.O., Fornasari, M.S. & Parisi, G. CoDNaS 2.0: a comprehensive database of protein conformational diversity in the native state. J. Biol. Databases Curation. 10.1093/database/baw038 (2016). PubMed PMC

Jasnovidova O, Krejcikova M, Kubicek K, Stefl R. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by Rtt103p. EMBO Rep. 2017;18:906–913. doi: 10.15252/embr.201643723. PubMed DOI PMC

Jasnovidova O, et al. Structure and dynamics of the RNAPII CTDsome with Rtt103. Proc. Natl. Acad. Sci. USA. 2017;114:11133–11138. doi: 10.1073/pnas.1712450114. PubMed DOI PMC

Frueh DP. Practical aspects of NMR signal assignment in larger and challenging proteins. Prog. Nucl. Magn. Reson. Spectrosc. 2014;78:47–75. doi: 10.1016/j.pnmrs.2013.12.001. PubMed DOI PMC

Kainosho M, et al. Optimal isotope labelling for NMR protein structure determinations. Nature. 2006;440:52–57. doi: 10.1038/nature04525. PubMed DOI

Tugarinov V, Kanelis V, Kay LE. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 2006;1:749–754. doi: 10.1038/nprot.2006.101. PubMed DOI

Vinarov DA, Markley JL. High-throughput automated platform for nuclear magnetic resonance–based structural proteomics. Expert. Rev. Proteom. 2005;2:49–55. doi: 10.1586/14789450.2.1.49. PubMed DOI

Dias DM, Ciulli A. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog. Biophys. Mol. Biol. 2014;116:101–112. doi: 10.1016/j.pbiomolbio.2014.08.012. PubMed DOI PMC

Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I. Random sampling of evolution time space and Fourier transform processing. J. Biomol. NMR. 2006;36:157–168. doi: 10.1007/s10858-006-9077-y. PubMed DOI

Stanek J, Augustyniak R, Koźmiński W. Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J. Magn. Reson. 2012;214:91–102. doi: 10.1016/j.jmr.2011.10.009. PubMed DOI

Delaglio F, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. Nmr. 1995;6:277–293. doi: 10.1007/BF00197809. PubMed DOI

Goddard TD, Kneller DG. SPARKY 3. San Francisco: University of California, San Francisco; 2000.

Bax A, Kontaxis G, Tjandra N. Dipolar couplings in macromolecular structure determination. Methods Enzymol. 2001;339:127–174. doi: 10.1016/S0076-6879(01)39313-8. PubMed DOI

Hansen MR, Mueller L, Pardi A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Mol. Biol. 1998;5:1065–1074. doi: 10.1038/4176. PubMed DOI

Fitzkee NC, Bax A. Facile measurement of 1H–15N residual dipolar couplings in larger perdeuterated proteins. J. Biomol. NMR. 2010;48:65–70. doi: 10.1007/s10858-010-9441-9. PubMed DOI PMC

Gronwald W, Kalbitzer HR. Automated structure determination of proteins by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2004;44:33–96. doi: 10.1016/j.pnmrs.2003.12.002. DOI

Baran MC, Huang YJ, Moseley HNB, Montelione GT. Automated analysis of protein NMR assignments and structures. Chem. Rev. 2004;104:3541–3556. doi: 10.1021/cr030408p. PubMed DOI

Reiping W, Vranken WF. Validation of archived chemical shifts through atomic coordinates. Proteins. 2010;78:2482–2489. PubMed PMC

Marin A, Malliavin TE, Nicolas P, Delsuc MA. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei. J. Biomol. NMR. 2004;30:47–60. doi: 10.1023/B:JNMR.0000042948.12381.88. PubMed DOI

Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970;48:443–453. doi: 10.1016/0022-2836(70)90057-4. PubMed DOI

Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA. 1992;89:10915–10919. doi: 10.1073/pnas.89.22.10915. PubMed DOI PMC

Hiller S, Joss R, Wider G. Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY) J. Am. Chem. Soc. 2008;130:12073–12079. doi: 10.1021/ja803161d. PubMed DOI

Lange O, Baker D. Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins. 2012;80:884–895. doi: 10.1002/prot.23245. PubMed DOI PMC

Warner LR, et al. Structure of the BamC two-domain protein obtained by Rosetta with a limited NMR data set. J. Mol. Biol. 2011;411:83–95. doi: 10.1016/j.jmb.2011.05.022. PubMed DOI PMC

Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR. 1999;13:289–302. doi: 10.1023/A:1008392405740. PubMed DOI

Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR. 2013;56:227–241. doi: 10.1007/s10858-013-9741-y. PubMed DOI PMC

Gront, D., Kulp, D. W., Vernon, R. M., Strauss, C. E. M. & Baker, D. Generalized fragment picking in Rosetta: design, protocols and applications. PLoS ONE e23294 (2011). PubMed PMC

Nilges M. Ambiguous distance data in the calculation of NMR structures. Fold Des. 1997;2:S53–S57. doi: 10.1016/S1359-0278(97)00064-3. PubMed DOI

Foster MP, McElroy CA, Amero CD. Solution NMR of large molecules and assemblies. Biochem. (Mosc.). 2007;46:331–340. doi: 10.1021/bi0621314. PubMed DOI PMC

Gutmanas A, et al. NMR Exchange Format: a unified and open standard for representation of NMR restraint data. Nat. Struct. Mol. Biol. 2015;22:433–434. doi: 10.1038/nsmb.3041. PubMed DOI PMC

Ulrich EL, et al. BioMagResBank. Nucleic Acids Res. 2008;36:D402–D408. doi: 10.1093/nar/gkm957. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace