Phosphorylation-induced changes in the PDZ domain of Dishevelled 3

. 2021 Jan 15 ; 11 (1) : 1484. [epub] 20210115

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33452274
Odkazy

PubMed 33452274
PubMed Central PMC7810883
DOI 10.1038/s41598-020-79398-5
PII: 10.1038/s41598-020-79398-5
Knihovny.cz E-zdroje

The PDZ domain of Dishevelled 3 protein belongs to a highly abundant protein recognition motif which typically binds short C-terminal peptides. The affinity of the PDZ towards the peptides could be fine-tuned by a variety of post-translation modifications including phosphorylation. However, how phosphorylations affect the PDZ structure and its interactions with ligands remains elusive. Combining molecular dynamics simulations, NMR titration, and biological experiments, we explored the role of previously reported phosphorylation sites and their mimetics in the Dishevelled PDZ domain. Our observations suggest three major roles for phosphorylations: (1) acting as an on/off PDZ binding switch, (2) allosterically affecting the binding groove, and (3) influencing the secondary binding site. Our simulations indicated that mimetics had similar but weaker effects, and the effects of distinct sites were non-additive. This study provides insight into the Dishevelled regulation by PDZ phosphorylation. Furthermore, the observed effects could be used to elucidate the regulation mechanisms in other PDZ domains.

Zobrazit více v PubMed

Kennedy MB. Origin of Pdz (Dhr, Glgf) domains. Trends Biochem. Sci. 1995;20:350. doi: 10.1016/S0968-0004(00)89074-X. PubMed DOI

Stiffler MA, Grantcharova VP, Sevecka M, MacBeath G. Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays. J. Am. Chem. Soc. 2006;128:5913–5922. doi: 10.1021/ja060943h. PubMed DOI PMC

Luck K, Charbonnier S, Travé G. The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett. 2012;586:2648–2661. doi: 10.1016/j.febslet.2012.03.056. PubMed DOI

Ye F, Zhang M. Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem. J. 2013;455:1–14. doi: 10.1042/BJ20130783. PubMed DOI

Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-Syntrophin complex. Science. 1999;284:812–815. doi: 10.1126/science.284.5415.812. PubMed DOI

Tochio H, Hung F, Li M, Bredt DS, Zhang M. Solution structure and backbone dynamics of the second PDZ domain of postsynaptic density-951. J. Mol. Biol. 2000;295:225–237. doi: 10.1006/jmbi.1999.3350. PubMed DOI

Zimmermann P, et al. PubMed DOI

Gallardo R, Ivarsson Y, Schymkowitz J, Rousseau F, Zimmermann P. Structural diversity of PDZ-lipid interactions. Chembiochem. 2010;11:456–467. doi: 10.1002/cbic.200900616. PubMed DOI

Erlendsson S, Madsen KL. Membrane binding and modulation of the PDZ domain of PICK1. Membranes. 2015;5:597–615. doi: 10.3390/membranes5040597. PubMed DOI PMC

Nourry C, Grant SG, Borg J-P. PDZ domain proteins: plug and play! Sci. Signal. 2003;2003:re7–re7. doi: 10.1126/stke.2003.179.re7. PubMed DOI

Doyle DA, et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell. 1996;85:1067–1076. doi: 10.1016/S0092-8674(00)81307-0. PubMed DOI

Mishra P, et al. Dynamic scaffolding in a G protein-coupled signaling system. Cell. 2007;131:80–92. doi: 10.1016/j.cell.2007.07.037. PubMed DOI

Bikkavilli RK, et al. Dishevelled3 is a novel arginine methyl transferase substrate. Sci. Rep. 2012;2:805. doi: 10.1038/srep00805. PubMed DOI PMC

Subbaiah VK, Kranjec C, Thomas M, Banks L. PDZ domains: the building blocks regulating tumorigenesis. Biochem. J. 2011;439:195–205. doi: 10.1042/BJ20110903. PubMed DOI

Ivarsson Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett. 2012;586:2638–2647. doi: 10.1016/j.febslet.2012.04.015. PubMed DOI PMC

Akiva E, Friedlander G, Itzhaki Z, Margalit H. A dynamic view of domain-motif interactions. PLoS ONE. 2012;8:e1002341. PubMed PMC

Chung HJ, Huang YH, Lau L-F, Huganir RL. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J. Neurosci. 2004;24:10248–10259. doi: 10.1523/JNEUROSCI.0546-04.2004. PubMed DOI PMC

Adey NB, et al. Threonine phosphorylation of the MMAC1/PTEN PDZ binding domain both inhibits and stimulates PDZ binding. Cancer Res. 2000;60:35–37. PubMed

Birrane G, Chung J, Ladias JA. Novel mode of ligand recognition by the Erbin PDZ domain. J. Biol. Chem. 2003;278:1399–1402. doi: 10.1074/jbc.C200571200. PubMed DOI

Raghuram V, Hormuth H, Foskett JK. A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions. Proc. Natl. Acad. Sci. 2003;100:9620–9625. doi: 10.1073/pnas.1633250100. PubMed DOI PMC

Voltz JW, et al. Phosphorylation of PDZI domain attenuates NHERF-1 binding to cellular targets. J. Biol. Chem. 2007;282:33879–33887. doi: 10.1074/jbc.M703481200. PubMed DOI

Lee H-J, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun. Signal. 2010;8:8. doi: 10.1186/1478-811X-8-8. PubMed DOI PMC

Truschel ST, Zhang M, Bachert C, Macbeth MR, Linstedt AD. Allosteric regulation of GRASP protein-dependent Golgi membrane tethering by mitotic phosphorylation. J. Biol. Chem. 2012;287:19870–19875. doi: 10.1074/jbc.M111.326256. PubMed DOI PMC

Shao X, et al. Threonine 82 at the PDZ domain of PICK1 is critical for AMPA receptor interaction and localization. Neurochem. Int. 2010;56:962–970. doi: 10.1016/j.neuint.2010.04.006. PubMed DOI

Zhang J, Petit CM, King DS, Lee AL. Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK) J. Biol. Chem. 2011;286:41776–41785. doi: 10.1074/jbc.M111.272583. PubMed DOI PMC

Torchio GM, Ermácora MR, Sica MP. Equilibrium unfolding of the PDZ domain of PubMed DOI PMC

Ernst A, et al. A structural portrait of the PDZ domain family. J. Mol. Biol. 2014;426:3509–3519. doi: 10.1016/j.jmb.2014.08.012. PubMed DOI

Murciano-Calles J, Corbi-Verge C, Candel AM, Luque I, Martinez JC. Post-translational modifications modulate ligand recognition by the third PDZ domain of the MAGUK protein PSD-95. PLoS ONE. 2014;9:e90030. doi: 10.1371/journal.pone.0090030. PubMed DOI PMC

Gao C, Chen Y-G. Dishevelled: the hub of Wnt signaling. Cell. Signal. 2010;22:717–727. doi: 10.1016/j.cellsig.2009.11.021. PubMed DOI

Hanáková, K. et al. Comparative phosphorylation map of Dishevelled3 (DVL3). bioRxiv 621896 (2019). PubMed

Hanáková K, et al. Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. Cell Commun. Signal. 2019;17:170. doi: 10.1186/s12964-019-0470-z. PubMed DOI PMC

Harnoš J, et al. Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1. Nat. Commun. 2019;10:1804. doi: 10.1038/s41467-019-09651-7. PubMed DOI PMC

Szewczuk LM, Tarrant MK, Cole PA. Protein phosphorylation by semisynthesis: from paper to practice. Meth. Enzymol. 2009;462:1–24. doi: 10.1016/S0076-6879(09)62001-2. PubMed DOI PMC

Pedersen SW, et al. Site-specific phosphorylation of PSD-95 PDZ domains reveals fine-tuned regulation of protein-protein interactions. ACS Chem. Biol. 2017;12:2313–2323. doi: 10.1021/acschembio.7b00361. PubMed DOI PMC

Paclíková P, Bernatík O, Radaszkiewicz TW, Bryja V. The N-terminal part of the Dishevelled DEP domain is required for Wnt/ PubMed DOI PMC

Lee H-J, Shi D-L, Zheng JJ. Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways. eLife. 2015;4:e08142. doi: 10.7554/eLife.08142. PubMed DOI PMC

Rigden DJ, Fernández XM. The 2018 nucleic acids research database issue and the online molecular biology database collection. Nucl. Acids Res. 2017;46:D1–D7. doi: 10.1093/nar/gkx1235. PubMed DOI PMC

Clairfeuille T, et al. A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat. Struct. Mol. Biol. 2016;23:921. doi: 10.1038/nsmb.3290. PubMed DOI

Gogl G, et al. Dual specificity PDZ-and 14-3-3-binding motifs: a structural and interactomics study. Structure. 2020;28:747–759. doi: 10.1016/j.str.2020.03.010. PubMed DOI

Sundell GN, et al. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol. Syst. Biol. 2018;14:e8129. doi: 10.15252/msb.20178129. PubMed DOI PMC

Gógl G, et al. Rewiring of RSK-PDZ interactome by linear motif phosphorylation. J. Mol. Biol. 2019;431:1234–1249. doi: 10.1016/j.jmb.2019.01.038. PubMed DOI PMC

Peterson FC, Penkert RR, Volkman BF, Prehoda KE. Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition. Mol. Cell. 2004;13:665–676. doi: 10.1016/S1097-2765(04)00086-3. PubMed DOI

Fuentes EJ, Der CJ, Lee AL. Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. J. Mol. Biol. 2004;335:1105–1115. doi: 10.1016/j.jmb.2003.11.010. PubMed DOI

Liu X, Shepherd TR, Murray AM, Xu Z, Fuentes EJ. The structure of the Tiam1 PDZ domain/phospho-syndecan1 complex reveals a ligand conformation that modulates protein dynamics. Structure. 2013;21:342–354. doi: 10.1016/j.str.2013.01.004. PubMed DOI PMC

Dhulesia A, Gsponer J, Vendruscolo M. Mapping of two networks of residues that exhibit structural and dynamical changes upon binding in a PDZ domain protein. J. Am. Chem. Soc. 2008;130:8931–8939. doi: 10.1021/ja0752080. PubMed DOI

Kong Y, Karplus M. Signaling pathways of PDZ2 domain: a molecular dynamics interaction correlation analysis. Proteins. 2009;74:145–154. doi: 10.1002/prot.22139. PubMed DOI PMC

Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science. 1999;286:295–299. doi: 10.1126/science.286.5438.295. PubMed DOI

Whitney DS, Peterson FC, Kovrigin EL, Volkman BF. Allosteric activation of the Par-6 PDZ via a partial unfolding transition. J. Am. Chem. Soc. 2013;135:9377–9383. doi: 10.1021/ja400092a. PubMed DOI PMC

Kozlov G, Gehring K, Ekiel I. Solution structure of the PDZ2 domain from human phosphatase hPTP1E and its interactions with C-terminal peptides from the Fas receptor. Biochemistry. 2000;39:2572–2580. doi: 10.1021/bi991913c. PubMed DOI

Kozlov G, Banville D, Gehring K, Ekiel I. Solution structure of the PDZ2 domain from cytosolic human phosphatase hPTP1E complexed with a peptide reveals contribution of the PubMed DOI

Walma T, et al. Structure, dynamics and binding characteristics of the second PDZ domain of PTP-BL. J. Mol. Biol. 2002;316:1101–1110. doi: 10.1006/jmbi.2002.5402. PubMed DOI

Zhang J, et al. Structural basis of PubMed DOI

Tyler RC, Peterson FC, Volkman BF. Distal Interactions within the par3-VE-Cadherin complex. Biochemistry. 2010;49:951–957. doi: 10.1021/bi9017335. PubMed DOI PMC

Erlendsson S, et al. Protein interacting with C-kinase 1 (PICK1) binding promiscuity relies on unconventional PSD-95/discs-large/ZO-1 homology (PDZ) binding modes for nonclass II PDZ ligands. J. Biol. Chem. 2014;289:25327–25340. doi: 10.1074/jbc.M114.548743. PubMed DOI PMC

Mostarda S, Gfeller D, Rao F. Beyond the binding site: the role of the PubMed PMC

Moffett AS, Shukla D. Structural consequences of multisite phosphorylation in the BAK1 kinase domain. Biophys. J. 2020;118:698–707. PubMed PMC

Basdevant N, Weinstein H, Ceruso M. Thermodynamic basis for promiscuity and selectivity in protein–protein interactions: PDZ domains, a case study. J. Am. Chem. Soc. 2006;128:12766–12777. doi: 10.1021/ja060830y. PubMed DOI PMC

Duboué-Dijon E, et al. Binding of divalent cations to insulin: capillary electrophoresis and molecular simulations. J. Phys. Chem. B. 2018;122:5640–5648. doi: 10.1021/acs.jpcb.7b12097. PubMed DOI

Fox CA, Ellison P, Ikon N, Ryan RO. Calcium-induced transformation of cardiolipin nanodisks. Biochim. Biophys. Acta Biomembr. 2019;1861:1030–1036. doi: 10.1016/j.bbamem.2019.03.005. PubMed DOI PMC

De A. Wnt/ PubMed DOI

Sheldahl LC, et al. Dishevelled activates PubMed DOI PMC

Woods AS, Ferré S. Amazing stability of the arginine-phosphate electrostatic interaction. J. Proteome Res. 2005;4:1397–1402. doi: 10.1021/pr050077s. PubMed DOI PMC

Mandell DJ, et al. Strengths of hydrogen bonds involving phosphorylated amino acid side chains. J. Am. Chem. Soc. 2007;129:820–827. doi: 10.1021/ja063019w. PubMed DOI

Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Fiser A, Šali A. Modeller: generation and refinement of homology-based protein structure models. In: Mosbach K, editor. Methods in Enzymology. Amsterdam: Elsevier; 2003. pp. 461–491. PubMed

Fiser A, Do RKG, Šali A. Modeling of loops in protein structures. Protein Sci. 2000;9:1753–1773. doi: 10.1110/ps.9.9.1753. PubMed DOI PMC

Schrödinger, LLC. The PyMOL Molecular Graphics System, version 1.8 (2015).

Warnecke A, Sandalova T, Achour A, Harris RA. PyTMs: a useful PyMOL plugin for modeling common post-translational modifications. BMC Bioinform. 2014;15:370. doi: 10.1186/s12859-014-0370-6. PubMed DOI PMC

Bienkiewicz EA, Lumb KJ. Random-coil chemical shifts of phosphorylated amino acids. J. Biomol. NMR. 1999;15:203–206. doi: 10.1023/A:1008375029746. PubMed DOI

Śmiechowski M. Theoretical pKa prediction of O-phosphoserine in aqueous solution. Chem. Phys. Lett. 2010;501:123–129. doi: 10.1016/j.cplett.2010.10.063. DOI

Lindorff-Larsen K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–1958. doi: 10.1002/prot.22711. PubMed DOI PMC

Sorin EJ, Pande VS. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys. J. 2005;88:2472–2493. doi: 10.1529/biophysj.104.051938. PubMed DOI PMC

Homeyer N, Horn AH, Lanig H, Sticht H. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J. Mol. Model. 2006;12:281–289. doi: 10.1007/s00894-005-0028-4. PubMed DOI

Best RB, Zheng W, Mittal J. Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. J. Chem. Theory Comput. 2014;10:5113–5124. doi: 10.1021/ct500569b. PubMed DOI PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Darden T, York D, Pedersen L. Particle mesh Ewald: an N DOI

Essmann U, et al. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Hess B, Bekker H, Berendsen HJ, Fraaije JG. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Pronk S, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi: 10.1093/bioinformatics/btt055. PubMed DOI PMC

Abraham MJ, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Geerlof, A. Production of N-

Evangelidis T, et al. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra. Nat. Commun. 2018;9:384. doi: 10.1038/s41467-017-02592-z. PubMed DOI PMC

Laue TM, Shah BD, Ridgeway TM, Pelletier SL. Computer-aided interpretation of analytical sedimentation data for proteins. In: Harding S, Rowe A, Horton J, editors. Analytical Ultracentrifugation in Biochemistry and Polymer Science. Cambridge: Royal Society of Chemistry; 1992. pp. 90–125.

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC

Brautigam CA. Calculations and publication-quality illustrations for analytical ultracentrifugation data. In: Mosbach K, editor. Methods in Enzymology. Amsterdam: Elsevier; 2015. pp. 109–133. PubMed

Angers S, et al. The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt- PubMed DOI

Bernatík O, et al. Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1 PubMed DOI PMC

Korinek V, et al. Constitutive transcriptional activation by a PubMed DOI

Bryja V, Schulte G, Rawal N, Grahn A, Arenas E. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J. Cell Sci. 2007;120:586–595. doi: 10.1242/jcs.03368. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace