Purified Monascus Pigments: Biological Activities and Mechanisms of Action
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39906945
PubMed Central
PMC11877510
DOI
10.1021/acs.jnatprod.4c01008
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie chemie izolace a purifikace MeSH
- antiflogistika farmakologie chemie izolace a purifikace MeSH
- antiinfekční látky farmakologie chemie izolace a purifikace MeSH
- antioxidancia farmakologie chemie izolace a purifikace MeSH
- biologické pigmenty * farmakologie chemie izolace a purifikace MeSH
- flaviny farmakologie chemie MeSH
- grampozitivní bakterie účinky léků MeSH
- heterocyklické sloučeniny tricyklické MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- Monascus * chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ankaflavin MeSH Prohlížeč
- antibakteriální látky MeSH
- antiflogistika MeSH
- antiinfekční látky MeSH
- antioxidancia MeSH
- biologické pigmenty * MeSH
- flaviny MeSH
- heterocyklické sloučeniny tricyklické MeSH
- monascin MeSH Prohlížeč
Monascus pigments having yellow, orange, and red colors are widely studied for their potential beneficial properties. Many different biological activities have been reported regarding Monascus pigments and their derivatives, but the usual method is to test complex extracts from the mycelium of the fungus or from a fungus-fermented substrate. However, this review is mainly concerned with the biological activities of purified Monascus pigments. Both yellow (ankaflavin, monascin) and red (rubropunctamine, monascorubramine) Monascus pigments are proven antioxidants if used in concentrations of 10 μg/mL or higher. Antimicrobial activity against Gram-positive and Gram-negative bacteria and fungi has been observed with all Monascus pigments. However, the best antimicrobials are red Monascus pigments, and their amino acid derivatives (l-cysteine derivatives have MIC 4 μg/mL against Enterococcus faecalis). Yellow monaphilones and orange monaphilols seem to have the highest anti-inflammatory activity (IC50 1.7 μM of monaphilol D) and, together with red Monascus pigment derivatives, have mild antiobesity and antidiabetic activities. Further, monascin and ankaflavin in daily doses of 0.5 and 0.08 mg, respectively, lowered serum blood levels of low-density lipoprotein cholesterol complexes in rats on a high-fat diet. Orange Monascus pigments, rubropunctatin and monaphilols A and C, exhibit cytotoxic and antitumor activities (IC50 8-10 μM).
Zobrazit více v PubMed
Lin Y. L.; Wang T. H.; Lee M. H.; Su N. W. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl. Microbiol. Biotechnol. 2008, 77 (5), 965–973. 10.1007/s00253-007-1256-6. PubMed DOI
Hawksworth D.; Pitt J.. A new taxonomy for Monascus species based on cultural and microscopial characters. Australian Journal of Botany 1983, 31,51.10.1071/BT9830051. DOI
Morales-Oyervides L.; Ruiz-Sánchez J. P.; Oliveira J. C.; Sousa-Gallagher M. J.; Méndez-Zavala A.; Giuffrida D.; et al. Biotechnological approaches for the production of natural colorants by Talaromyces/Penicillium: A review. Biotechnology Advances 2020, 43, 10760110.1016/j.biotechadv.2020.107601. PubMed DOI
ANKASCIN® 568. https://www.ankascin.org/ Accessed 24.08.12.
Xiong F.; Wei J.; Zhou Y.; Shao Y.; Liu J.; Chen F. Exploring the subcellular localization of Monascus pigments biosynthases: Preliminary unraveling of the compartmentalization mechanism. Journal of Fungi 2024, 10 (6), 375.10.3390/jof10060375. PubMed DOI PMC
Jung H.; Kim C.; Kim K.; Shin C. S. Color characteristics of Monascus pigments derived by fermentation with various amino acids. J. Agric. Food Chem. 2003, 51 (5), 1302–1306. 10.1021/jf0209387. PubMed DOI
Lin T. F.; Yakushijin K.; Büchi G. H.; Demain A. L. Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. Journal of Industrial Microbiology 1992, 9 (3–4), 173–179. 10.1007/BF01569621. DOI
Kim C.; Jung H.; Kim J. H.; Shin C. S. Effect of Monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments. Colloids Surf., B 2006, 47 (2), 153–159. 10.1016/j.colsurfb.2005.12.009. PubMed DOI
Chen W.; Feng Y.; Molnár I.; Chen F. Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments. Natural Product Reports 2019, 36 (4), 561–572. 10.1039/C8NP00060C. PubMed DOI PMC
Gao J.-M.; Yang S.-X.; Qin J.-C. Azaphilones: chemistry and biology. Chem. Rev. 2013, 113 (7), 4755–4811. 10.1021/cr300402y. PubMed DOI
Hsu Y.-W.; Hsu L.-C.; Liang Y.-H.; Kuo Y.-H.; Pan T.-M. Monaphilones A-C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J. Agric. Food Chem. 2010, 58 (14), 8211–8216. 10.1021/jf100930j. PubMed DOI
Hossain C. F.; Okuyama E.; Yamazaki M. A new series of coumarin derivatives having monoamine oxidase inhibitory activity from Monascus anka. Chemical and pharmaceutical bulletin 1996, 44 (8), 1535–1539. 10.1248/cpb.44.1535. PubMed DOI
Jongrungruangchok S.; Kittakoop P.; Yongsmith B.; Bavovada R.; Tanasupawat S.; Lartpornmatulee N.; et al. Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 2004, 65 (18), 2569–2575. 10.1016/j.phytochem.2004.08.032. PubMed DOI
Chen S.; Su D.-X.; Gao M.-X.; Zhang J.-L.; Liu Y.-B.; Wu Q.-H.; et al.. A facile macroporous resin-based method for separation of yellow and orange Monascus pigments. Food Science and Biotechnology 2021,30545.10.1007/s10068-021-00892-1. PubMed DOI PMC
Choe D.; Song S. M.; Shin C. S.; Johnston T. V.; Ahn H. J.; Kim D.; et al. Production and characterization of anti-inflammatory Monascus pigment derivatives. Foods 2020, 9 (7), 858.10.3390/foods9070858. PubMed DOI PMC
Patrovsky M.; Sinovska K.; Branska B.; Patakova P. Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or orange Monascus purpureus pigments and the mycotoxin citrinin. Food Science & Nutrition 2019, 7 (11), 3494–3500. 10.1002/fsn3.1197. PubMed DOI PMC
Husakova M.; Orlandi V. T.; Bolognese F.; Branska B.; Patakova P. Screening antibacterial photodynamic effect of Monascus red yeast rice (Hong-Qu) and mycelium extracts. Curr. Microbiol. 2024, 81 (7), 183.10.1007/s00284-024-03725-6. PubMed DOI PMC
Poorniammal R.; Prabhu S.; Dufossé L.; Kannan J. Safety evaluation of fungal pigments for food applications. Journal of Fungi 2021, 7 (9), 692.10.3390/jof7090692. PubMed DOI PMC
Mohan Kumari H. P.; Akhilender Naidu K.; Vishwanatha S.; Narasimhamurthy K.; Vijayalakshmi G. Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem. Toxicol. 2009, 47 (8), 1739–1746. 10.1016/j.fct.2009.04.038. PubMed DOI
Tambalo F. M. Z.; Garcia J. F.; Estrellana C. D. Safety assessment of a fungal-based red colorant produced by Monascus purpureus MTCC 25436. Philippine Journal of Science 2022, 151 (4), 10.10.56899/151.04.17. DOI
Feng S.-S.; Li W.; Hu Y.-J.; Feng J.-X.; Deng J. The biological activity and application of Monascus pigments: a mini review. International Journal of Food Engineering 2022, 18 (4), 253–266. 10.1515/ijfe-2021-0235. DOI
He J.; Jia M.; Li W.; Deng J.; Ren J.; Luo F.; et al. Toward improvements for enhancement the productivity and color value of Monascus pigments: a critical review with recent updates. Critical Reviews in Food Science and Nutrition 2022, 62, 1–15. 10.1080/10408398.2021.1935443. PubMed DOI
Zhu B.; Qi F.; Wu J.; Yin G.; Hua J.; Zhang Q.; et al.. Red yeast rice: A systematic review of the traditional uses, chemistry, pharmacology, and quality control of an important chinese folk medicine. Frontiers in Pharmacology 2019, 10 ( (1449), ),10.3389/fphar.2019.01449. PubMed DOI PMC
Xiao F.; Xu T.; Lu B.; Liu R. Guidelines for antioxidant assays for food components. Food Frontiers 2020, 1 (1), 60–69. 10.1002/fft2.10. DOI
Alam Md. N.; Bristi N. J.; Rafiquzzaman Md. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal 2013, 21 (2), 143–152. 10.1016/j.jsps.2012.05.002. PubMed DOI PMC
Mendonça J. da S.; Guimarães R. de C. A.; Zorgetto-Pinheiro V. A.; Fernandes C. D. P.; Marcelino G.; Bogo D.; et al. Natural antioxidant evaluation: A review of detection methods. Molecules 2022, 27 (11), 3563.10.3390/molecules27113563. PubMed DOI PMC
Kurokawa H.; Ito H.; Matsui H. Monascus purpureus induced apoptosis on gastric cancer cell by scavenging mitochondrial reactive oxygen species. Journal of Clinical Biochemistry and Nutrition 2017, 61 (3), 189–195. 10.3164/jcbn.17-27. PubMed DOI PMC
Zhang X.; Liu C.; Tian W.; Zhang H.; Li P.; Wang J.; et al. Theoretical and experimental investigation of the antioxidative activity of monascin. Food & Function 2020, 11 (7), 5915–5923. 10.1039/C9FO02410G. PubMed DOI
Koli S. H.; Suryawanshi R. K.; Mohite B. V.; Patil S. V. Prospective of Monascus pigments as an additive to commercial sunscreens. Natural Product Communications 2019, 14 (12), 1934578X1989409510.1177/1934578X19894095. DOI
Bai J.; Gong Z.; Shu M.; Zhao H.; Ye F.; Tang C.; et al.. Increased water-soluble yellow Monascus pigment productivity via dual mutagenesis and submerged repeated-batch fermentation of Monascus purpureus. Frontiers in Microbiology 2022, 13,10.3389/fmicb.2022.914828 PubMed DOI PMC
Gong Z.; Jiao P.; Huang F.; Zhang S.; Zhou B.; Lin Q.; et al. Separation and antioxidant activity of the water-soluble yellow Monascus pigment and its application in the preparation of functional rice noodles. LWT 2023, 185, 11517210.1016/j.lwt.2023.115172. DOI
Chiu H.-W.; Fang W.-H.; Chen Y.-L.; Wu M.-D.; Yuan G.-F.; Ho S.-Y.; et al. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PloS one 2012, 7 (7), e4046210.1371/journal.pone.0040462. PubMed DOI PMC
Wu L.; Zhou K.; Chen F.; Chen G.; Yu Y.; Lv X.; et al.. Comparative study on the antioxidant activity of Monascus yellow pigments from two different types of hongqu—functional qu and coloring qu. Frontiers in Microbiology 2021, 12 ( (2127), ),10.3389/fmicb.2021.715295. PubMed DOI PMC
Takeshita R.; Saigusa N.; Teramoto Y.. Production and antioxidant activity of alcoholic beverages made from various cereal grains using Monascus purpureus NBRC 5965. Journal of the Institute of Brewing 2016, 122, 350.10.1002/jib.316. DOI
Tseng Y.-H.; Yang J.-H.; Chang H.-L.; Lee Y.-L.; Mau J.-L. Antioxidant properties of methanolic extracts from monascal adlay. Food Chem. 2006, 97 (3), 375–381. 10.1016/j.foodchem.2005.04.022. DOI
Tochampa W.Impact of in vitro digestion phases on antioxidant properties of Monascal waxy corn from 2-STEP fermentation. Journal of Microbiology, Biotechnology and Food Sciences 2018,.
Kim H.; Yu K.-W.; Lee J.-S.; Baek G.-H.; Shin J.-Y. The pharmacological activity of coffee fermented using Monascus purpureus mycelium solid-state culture depends on the cultivation area and green coffees variety. Korean Journal of Food Science and Technology 2014, 46 (1), 79–86. 10.9721/KJFST.2014.46.1.79. DOI
Goufo P.; Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Science & Nutrition 2014, 2 (2), 75–104. 10.1002/fsn3.86. PubMed DOI PMC
World Health Organization . Ten threats to global health in 2019. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019, Accessed 23.02.03.
World Health Organization . Global strategy for containment of antimicrobial resistance. 2001.
Balouiri M.; Sadiki M.; Ibnsouda S. K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 2016, 6 (2), 71–79. 10.1016/j.jpha.2015.11.005. PubMed DOI PMC
Gökmen G. G.; Şılbır M. S.; Göksungur Y.; Kışla D. Antimicrobial activity of red pigments derived from Monascus purpureus: A comparison to industrial red pigments. JSFA reports 2021, 1 (1), 5–10. 10.1002/jsf2.20. DOI
Martinkova L.; Juzlova P.; Vesely D. Biological activity of polyketide pigments produced by the fungus Monascus. Journal of Applied Bacteriology 1995, 79 (6), 609–616. 10.1111/j.1365-2672.1995.tb00944.x. DOI
Kim C.; Jung H.; Kim Y. O.; Shin C. S. Antimicrobial activities of amino acid derivatives of Monascus pigments. FEMS Microbiology Letters 2006, 264 (1), 117–124. 10.1111/j.1574-6968.2006.00451.x. PubMed DOI
Mukherjee G.; Singh S. K. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochemistry 2011, 46 (1), 188–192. 10.1016/j.procbio.2010.08.006. DOI
Vendruscolo F.; Tosin I.; Giachini A. J.; Schmidell W.; Ninow J. L. Antimicrobial activity of Monascus pigments produced in submerged fermentation. Journal of Food Processing and Preservation 2014, 38 (4), 1860–1865. 10.1111/jfpp.12157. DOI
Martinkova L.; Patakova-Juzlova P.; Kren V.; Kucerova Z.; Havlicek V.; Olsovsky P.; et al. Biological activities of oligoketide pigments of Monascus purpureus. Food Additives & Contaminants 1999, 16 (1), 15–24. 10.1080/026520399284280. PubMed DOI
Zhao G.-P.; Li Y.-Q.; Yang J.; Cui K.-Y. Antibacterial characteristics of orange pigment extracted from Monascus pigments against Escherichia coli. Czech Journal of Food Sciences 2016, 34, 197–203. 10.17221/430/2015-CJFS. DOI
Feng L. H.; Li Y. Q.; Sun G. J.; Zhao X. Z. Antibacterial effect of orange Monascus pigment against Staphylococcus aureus. Acta Alimentaria 2019, 48 (2), 169–176. 10.1556/066.2019.48.2.4. DOI
Gao X.; Lu X.; Wang Z.; Liu G.; Li X. Study on the extraction and antibacterial activity of Monascin. E3S Web of Conferences 2021, 251, 02061.10.1051/e3sconf/202125102061. DOI
Wong H.-C.; Koehler P. E. Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production. J. Food Sci. 1981, 46 (2), 589–592. 10.1111/j.1365-2621.1981.tb04917.x. DOI
Majhi S.; Dhale M. A.; Honganoor Puttananjaiah M.. Inhibitory effect of Monascus purpureus pigment extracts against fungi and mechanism of action. Frontiers in Sustainable Food Systems 2023, 7,10.3389/fsufs.2023.1100961. DOI
Yu X.; Wu H.; Zhang J. Effect of Monascus as a nitrite substitute on color, lipid oxidation, and proteolysis of fermented meat mince. Food Science and Biotechnology 2015, 24 (2), 575–581. 10.1007/s10068-015-0075-2. DOI
El-Kholie E. M.; El Shaer M. K.; Abdelreheem M. A. T.; Gharib M. A. Detailed evaluation of a newly attained fungal pigment from Monascus purpureus in meat burgers. International Journal of Food Sciences and Nutrition 2012, 63 (7), 860–865. 10.3109/09637486.2011.641945. PubMed DOI
Fabre C. E.; Santerre A. L.; Loret M. O.; Baberian R.; Pareilleux A.; Goma G.; et al. Production and food applications of the red pigments of Monascus ruber. J. Food Sci. 1993, 58 (5), 1099–1102. 10.1111/j.1365-2621.1993.tb06123.x. DOI
Husakova M.; Plechata M.; Branska B.; Patakova P.. Effect of a Monascus sp. red yeast rice extract on germination of bacterial spores. Frontiers in Microbiology 2021, 12 ( (1254), ),10.3389/fmicb.2021.686100. PubMed DOI PMC
Koli S. H.; Mohite B. V.; Suryawanshi R. K.; Borase H. P.; Patil S. V. Extracellular red Monascus pigment-mediated rapid one-step synthesis of silver nanoparticles and its application in biomedical and environment. Bioprocess Biosyst. Eng. 2018, 41 (5), 715–727. 10.1007/s00449-018-1905-4. PubMed DOI
Lin G.; Zhao C.; Liao W.; Yang J.; Zheng Y. Eco-friendly green synthesis of rubropunctatin functionalized silver nanoparticles and evaluation of antibacterial activity. Nanomaterials 2022, 12 (22), 4052.10.3390/nano12224052. PubMed DOI PMC
World Health Organization . Obesity, https://www.who.int/health-topics/obesity, Accessed 24.11.13.
Boutari C.; DeMarsilis A.; Mantzoros C. S. Obesity and diabetes. Diabetes Research and Clinical Practice 2023, 202, 11077310.1016/j.diabres.2023.110773. PubMed DOI
Laube H. Acarbose. Clinical Drug Investigation 2002, 22 (3), 141–156. 10.2165/00044011-200222030-00001. DOI
Winkler F. K.; D’Arcy A.; Hunziker W. Structure of human pancreatic lipase. Nature 1990, 343 (6260), 771–774. 10.1038/343771a0. PubMed DOI
Butterworth P. J.; Warren F. J.; Ellis P. R. Human α-amylase and starch digestion: An interesting marriage. Starch - Stärke 2011, 63 (7), 395–405. 10.1002/star.201000150. DOI
Chiba S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci., Biotechnol., Biochem. 1997, 61 (8), 1233–1239. 10.1271/bbb.61.1233. PubMed DOI
Fang Y.-X.; Song H.-P.; Liang J.-X.; Li P.; Yang H. Rapid screening of pancreatic lipase inhibitors from Monascus -fermented rice by ultrafiltration liquid chromatography-mass spectrometry. Analytical Methods 2017, 9 (23), 3422–3429. 10.1039/C7AY00777A. DOI
Kim J. H.; Kim H. J.; Kim C.; Jung H.; Kim Y. O.; Ju J. Y.; et al. Development of lipase inhibitors from various derivatives of Monascus pigment produced by Monascus fermentation. Food Chem. 2007, 101 (1), 357–364. 10.1016/j.foodchem.2005.11.055. DOI
Kim J. H.; Kim H. J.; Park H. W.; Youn S. H.; Choi D.-Y.; Shin C. S. Development of inhibitors against lipase and α-glucosidase from derivatives of Monascus pigment. FEMS Microbiology Letters 2007, 276 (1), 93–98. 10.1111/j.1574-6968.2007.00917.x. PubMed DOI
Hsu W.-H.; Huang Y.-C.; Lee B.-H.; Hsu Y.-W.; Pan T.-M. The improvements of ankaflavin isolated from Monascus-fermented products on dyslipidemia in high-fat diet-induced hasmster. Journal of Functional Foods 2013, 5 (1), 434–443. 10.1016/j.jff.2012.11.016. DOI
Hsu W.-H.; Chen T.-H.; Lee B.-H.; Hsu Y.-W.; Pan T.-M. Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem. Toxicol. 2014, 64, 94–103. 10.1016/j.fct.2013.11.015. PubMed DOI
Hsu W.-H.; Liao T.-H.; Lee B.-H.; Hsu Y.-W.; Pan T.-M. Ankaflavin regulates adipocyte function and attenuates hyperglycemia caused by high-fat diet via PPAR-γ activation. Journal of Functional Foods 2013, 5 (1), 124–132. 10.1016/j.jff.2012.09.003. DOI
Lee B.-H.; Hsu W.-H.; Chang Y.-Y.; Kuo H.-F.; Hsu Y.-W.; Pan T.-M. Ankaflavin: a natural novel PPARγ agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free Radical Biol. Med. 2012, 53 (11), 2008–2016. 10.1016/j.freeradbiomed.2012.09.025. PubMed DOI
Hsu W.-H.; Pan T.-M. Treatment of metabolic syndrome with ankaflavin, a secondary metabolite isolated from the edible fungus Monascus spp. Appl. Microbiol. Biotechnol. 2014, 98 (11), 4853–4863. 10.1007/s00253-014-5716-5. PubMed DOI
Lee C.-L.; Wen J.-Y.; Hsu Y.-W.; Pan T.-M. Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J. Agric. Food Chem. 2013, 61 (7), 1493–1500. 10.1021/jf304015z. PubMed DOI
Evans R. M.; Barish G. D.; Wang Y.-X. PPARs and the complex journey to obesity. Nature Medicine 2004, 10 (4), 355–361. 10.1038/nm1025. PubMed DOI
Bailey C. J.Thiazolidinediones. In xPharm: The Comprehensive Pharmacology Reference; Enna S. J., Bylund D. B., Eds.; Elsevier: New York, 2007; pp 1–2.
Zhang S.; Zhang Z.-Y. PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discovery Today 2007, 12 (9), 373–381. 10.1016/j.drudis.2007.03.011. PubMed DOI
Lagrost L.; Gambert P.; Dangremont V.; Athias A.; Lallemant C. Role of cholesteryl ester transfer protein (CETP) in the HDL conversion process as evidenced by using anti-CETP monoclonal antibodies. J. Lipid Res. 1990, 31 (9), 1569–1575. 10.1016/S0022-2275(20)42341-7. PubMed DOI
Jin Y.; Cheng X.; Jiang F.; Guo Z.; Xie J.; Fu L. Application of the ultrafiltration-based LC-MS approach for screening PTP1B inhibitors from Chinese red yeast rice. Analytical Methods 2016, 8 (2), 353–361. 10.1039/C5AY01767J. DOI
Jang H.; Choe D.; Shin C. S. Novel derivatives of Monascus pigment having a high CETP inhibitory activity. Natural Product Research 2014, 28 (18), 1427–1431. 10.1080/14786419.2014.905561. PubMed DOI
Liu L.; Zhao J.; Huang Y.; Xin Q.; Wang Z.. Diversifying of chemical structure of native Monascus pigments. Frontiers in Microbiology 2018, 9,10.3389/fmicb.2018.03143. PubMed DOI PMC
Lee C.-L.; Wen J.-Y.; Hsu Y.-W.; Pan T.-M. The blood lipid regulation of Monascus-produced monascin and ankaflavin via the suppression of low-density lipoprotein cholesterol assembly and stimulation of apolipoprotein A1 expression in the liver. Journal of Microbiology, Immunology and Infection 2018, 51 (1), 27–37. 10.1016/j.jmii.2016.06.003. PubMed DOI
Liu S.-F.; Wang Y.-R.; Shen Y.-C.; Chen C.-L.; Huang C.-N.; Pan T.-M.; et al. A randomized, double-blind clinical study of the effects of Ankascin 568 plus on blood lipid regulation. Journal of Food and Drug Analysis 2018, 26 (1), 393–400. 10.1016/j.jfda.2017.04.006. PubMed DOI PMC
Zhou W.; Guo R.; Guo W.; Hong J.; Li L.; Ni L.; et al. Monascus yellow, red and orange pigments from red yeast rice ameliorate lipid metabolic disorders and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet. Food & Function 2019, 10 (2), 1073–1084. 10.1039/C8FO02192A. PubMed DOI
World Health Organization . Cancer, https://www.who.int/health-topics/cancer, Accessed 24.03.21.
Chen K.; Lin J.-A.; Yao H.-Y.; Hsu A.-C.; Tai Y.; Ho B. Monascin accelerates anoikis in circulating tumor cells and prevents breast cancer metastasis. Oncology Letters 2020, 20 (5), 1–1. 10.3892/ol.2020.12029. PubMed DOI PMC
Tan H.; Xing Z.; Chen G.; Tian X.; Wu Z. Evaluating antitumor and antioxidant activities of yellow Monascus pigments from Monascus ruber fermentation. Molecules 2018, 23 (12), 3242.10.3390/molecules23123242. PubMed DOI PMC
Huang T.; Tan H.; Chen G.; Wang L.; Wu Z. Rising temperature stimulates the biosynthesis of water-soluble fluorescent yellow pigments and gene expression in Monascus ruber CGMCC10910. AMB Express 2017, 7, 134.10.1186/s13568-017-0441-y. PubMed DOI PMC
Park H.-J.; Kim I.-S. Antioxidant activities and anticancer effects of red yeast rice grown in the medium containing garlic. Food Science and Biotechnology 2011, 20 (2), 297–302. 10.1007/s10068-011-0042-5. DOI
Hasim H.; Nasution S. P.; Priosoeryanto B. P.; Qomaliyah E. N. Antiproliferation activity of water and ethyl acetate red yeast rice fraction against MCM-B2 tumor cells. Pharmaciana 2020, 10 (3), 239–248. 10.12928/pharmaciana.v10i3.16951. DOI
Hsu Y.-W.; Hsu L.-C.; Liang Y.-H.; Kuo Y.-H.; Pan T.-M. New bioactive orange pigments with yellow fluorescence from Monascus-fermented dioscorea. J. Agric. Food Chem. 2011, 59 (9), 4512–4518. 10.1021/jf1045987. PubMed DOI
Su N. W.; Lin Y. L.; Lee M. H.; Ho C. Y. Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J. Agric. Food Chem. 2005, 53 (6), 1949–1954. 10.1021/jf048310e. PubMed DOI
Zheng Y.; Zhang Y.; Chen D.; Chen H.; Lin L.; Zheng C.; et al. Monascus pigment rubropunctatin: A potential dual agent for cancer chemotherapy and phototherapy. J. Agric. Food Chem. 2016, 64 (12), 2541–2548. 10.1021/acs.jafc.5b05343. PubMed DOI
Akihisa T.; Tokuda H.; Ukiya M.; Kiyota A.; Yasukawa K.; Sakamoto N.; et al. Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chemistry & Biodiversity 2005, 2 (10), 1305–1309. 10.1002/cbdv.200590101. PubMed DOI
Yasukawa K.; Takahashi M.; Natori S.; Kawai K.; Yamazaki M.; Takeuchi M.; et al. Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice. Oncology 2004, 51 (1), 108–112. 10.1159/000227320. PubMed DOI
Hong M. Y.; Henning S.; Moro A.; Seeram N. P.; Zhang Y.; Heber D. Chinese red yeast rice inhibition of prostate tumor growth in SCID mice. Cancer Prevention Research 2011, 4 (4), 608–615. 10.1158/1940-6207.CAPR-10-0219. PubMed DOI PMC
Yang T.; Liu J.; Luo F.; Lin Q.; Rosol T. J.; Deng X. Anticancer properties of Monascus metabolites. Anticancer Drugs 2014, 25 (7), 735–744. 10.1097/CAD.0000000000000102. PubMed DOI
Long P.; Zhu L.; Lai H.; Xu S.; Dong X.; Shao Y.; et al. Monascus red pigment liposomes: Microstructural characteristics, stability, and anticancer activity. Foods 2023, 12 (3), 447.10.3390/foods12030447. PubMed DOI PMC
Xu D.; Xie J.; Feng X.; Zhang X.; Ren Z.; Zheng Y.; et al. Preparation and evaluation of a Rubropunctatin-loaded liposome anticancer drug carrier. RSC Adv. 2020, 10 (17), 10352–10360. 10.1039/C9RA10390B. PubMed DOI PMC
Ning S.; Wang C.; Zhao L.; Yang J.; Shi X.; Zheng Y. Lecithin/chitosan nanoparticle drug carrier improves anti-tumor efficacy of Monascus pigment rubropunctatin. Int. J. Biol. Macromol. 2023, 242, 12505810.1016/j.ijbiomac.2023.125058. PubMed DOI
Hsu L.-C.; Hsu Y.-W.; Liang Y.-H.; Kuo Y.-H.; Pan T.-M. Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from Monascus purpureus NTU 568. J. Agric. Food Chem. 2011, 59 (4), 1124–1130. 10.1021/jf103652n. PubMed DOI
Chen R.-J.; Hung C.-M.; Chen Y.-L.; Wu M.-D.; Yuan G.-F.; Wang Y.-J. Monascuspiloin induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. J. Agric. Food Chem. 2012, 60 (29), 7185–7193. 10.1021/jf3016927. PubMed DOI
Zheng Y.; Xin Y.; Shi X.; Guo Y. Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J. Agric. Food Chem. 2010, 58 (17), 9523–9528. 10.1021/jf102128t. PubMed DOI
Antonelli M.; Kushner I. It’s time to redefine inflammation. FASEB J. 2017, 31 (5), 1787–1791. 10.1096/fj.201601326R. PubMed DOI
Sharma J. N.; Al-Omran A.; Parvathy S. S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15 (6), 252–259. 10.1007/s10787-007-0013-x. PubMed DOI
Hsu L.-C.; Liang Y.-H.; Hsu Y.-W.; Kuo Y.-H.; Pan T.-M. Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568. J. Agric. Food Chem. 2013, 61 (11), 2796–2802. 10.1021/jf305521v. PubMed DOI
Lai J.-R.; Hsu Y.-W.; Pan T.-M.; Lee C.-L. Monascin and ankaflavin of Monascus purpureus prevent alcoholic liver disease through regulating AMPK-mediated lipid metabolism and enhancing both anti-inflammatory and anti-oxidative systems. Molecules 2021, 26 (20), 6301.10.3390/molecules26206301. PubMed DOI PMC
Huang Y.; Fu R.; Yin W.; Chen R.; Zhao C.; Hu F.; et al. Metabolites analysis and new bioactive pigments from a Monascus purpureus strain with low citrinin. Microchemical Journal 2023, 195, 10944110.1016/j.microc.2023.109441. DOI
Cheng M.-J.; Wu M.-D.; Yuan G.-F.; Su Y.-S.; Yanai H. Secondary metabolites produced by the fungus Monascus pilosus and their anti-inflammatory activity. Phytochemistry Letters 2012, 5 (3), 567–571. 10.1016/j.phytol.2012.05.015. DOI
Zou J.; Yan C.; Wan J.-B. Red yeast rice ameliorates non-alcoholic fatty liver disease through inhibiting lipid synthesis and NF-κB/NLRP3 inflammasome-mediated hepatic inflammation in mice. Chinese Medicine 2022, 17 (1), 17.10.1186/s13020-022-00573-z. PubMed DOI PMC
Chen C. C.; Chyau C. C.; Liao C. C.; Hu T. J.; Kuo C. F. Enhanced anti-inflammatory activities of Monascus pilosus fermented products by addition of ginger to the medium. J. Agric. Food Chem. 2010, 58 (22), 12006–12013. 10.1021/jf103070m. PubMed DOI
Deng X.; Hou Y.; Zhou H.; Li Y.; Xue Z.; Xue X.; et al.. Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation. Food Science & Nutrition 2021, 9, 1160.10.1002/fsn3.2096. PubMed DOI PMC
Wu H.-C.; Chen J.-J.; Wu M.-D.; Cheng M.-J.; Chang H.-S. Identification of new pigments produced by the fermented rice of the fungus Monascus pilosus and their anti-inflammatory activity. Phytochemistry Letters 2020, 40, 181–187. 10.1016/j.phytol.2020.04.014. DOI
Cheng M.-J.; Wu M.-D.; Su Y.-S.; Yuan G.-F.; Chen Y.-L.; Chen I.-S. Secondary metabolites from the fungus Monascus kaoliang and inhibition of nitric oxide production in lipopolysaccharide-activated macrophages. Phytochemistry Letters 2012, 5 (2), 262–266. 10.1016/j.phytol.2012.01.008. DOI
Edmondson D. E.; Mattevi A.; Binda C.; Li M.; Hubalek F. Structure and mechanism of monoamine oxidase. Curr. Med. Chem. 2004, 11 (15), 1983–1993. 10.2174/0929867043364784. PubMed DOI
Lee C. L.; Pan T. M. Red mold fermented products and Alzheimer’s disease: a review. Appl. Microbiol. Biotechnol. 2011, 91 (3), 461–469. 10.1007/s00253-011-3413-1. PubMed DOI
Lee C.-L.; Lin P.-Y.; Hsu Y.-W.; Pan T.-M. Monascus-fermented monascin and ankaflavin improve the memory and learning ability in amyloid β-protein intracerebroventricular-infused rat via the suppression of Alzheimer’s disease risk factors. Journal of Functional Foods 2015, 18, 387–399. 10.1016/j.jff.2015.08.002. DOI
Lee C.-L.; Kuo T.-F.; Wang J.-J.; Pan T.-M. Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid β-infused rat by repressing amyloid β accumulation. Journal of Neuroscience Research 2007, 85 (14), 3171–3182. 10.1002/jnr.21428. PubMed DOI
Wu H.-C.; Chen Y.-F.; Cheng M.-J.; Wu M.-D.; Chen Y.-L.; Chang H.-S. Investigations into chemical components from Monascus purpureus with photoprotective and anti-melanogenic activities. Journal of Fungi 2021, 7 (8), 619.10.3390/jof7080619. PubMed DOI PMC
Jo D.; Choe D.; Nam K.; Shin C. S. Biological evaluation of novel derivatives of the orange pigments from Monascus sp. as inhibitors of melanogenesis. Biotechnol. Lett. 2014, 36 (8), 1605–1613. 10.1007/s10529-014-1518-1. PubMed DOI