Effect of a Monascus sp. Red Yeast Rice Extract on Germination of Bacterial Spores
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34108955
PubMed Central
PMC8180847
DOI
10.3389/fmicb.2021.686100
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus subtilis, Clostridium beijerinckii, Monascus, bacterial spores germination, nitrite, red yeast rice,
- Publikační typ
- časopisecké články MeSH
The pink-red color of traditional sausages (cured meat) is the result of nitrite addition and the formation of nitrosomyoglobin. However, the pleasant color of processed meat products is a side effect of nitrite addition while the main anticipated goal is to suppress the germination of clostridial spores. The fungus Monascus is known as a producer of oligoketide pigments, which are used in Asian countries, especially in China, for coloring foods, including meat products. Although, different biological activities of Monascus pigments have been tested and confirmed in many studies, their effect on germination of bacterial spores has never been investigated. This study is focused on testing the activity of red yeast rice (RYR) extract, containing monascin, rubropunctatin, rubropunctamine complexes and monascuspiloin as the main pigments, on germination of Clostridium and Bacillus spores. It was found that addition of nitrite alone, at the permitted concentration, had no effect on spore germination. However, the combined effects of nitrite with NaCl, tested after addition of pickling salt, was efficient in inhibiting the germination of C. beijerinckii spores but had no effect on B. subtilis spores. In contrast, total suppression of C. beijerinckii spore germination was reached after addition of RYR extract to the medium at a concentration of 2% v/v. For B. subtilis, total inhibition of spore germination was observed only after addition of 4% v/v RYR extract to the medium containing 1.3% w/w NaCl.
Zobrazit více v PubMed
Akihisa T., Tokuda H., Ukiya M., Kiyota A., Yasukawa K., Sakamoto N., et al. (2005). Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem. Biodivers 2 1305–1309. 10.1002/cbdv.200590101 PubMed DOI
EFSA Panel on Food Additives and Nutrient Sources added to Food [ANS], Younes M., Aggett P., Aguilar F., Crebelli R., Dusemund B. (2018). Scientific opinion on the safety of monacolins in red yeast rice. EFSA J. 16:e05368. PubMed PMC
Ávila M., Gómez-Torres N., Hernández M., Garde S. (2014). Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species. Int. J. Food Microbiol. 172 70–75. 10.1016/j.ijfoodmicro.2013.12.002 PubMed DOI
Balakrishnan B., Karki S., Chiu S.-H., Kim H.-J., Suh J.-W., Nam B., et al. (2013). Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 97 6337–6345. 10.1007/s00253-013-4745-9 PubMed DOI
Bhattacharjee D., McAllister K. N., Sorg J. A. (2016). Germinants and their receptors in Clostridia. J. Bacteriol. 198 2767–2775. 10.1128/JB.00405-16 PubMed DOI PMC
Bianchi A. (2005). Extracts of Monascusus purpureus beyond statins —Profile of efficacy and safety of the use of extracts of Monascus purpureus. Chin. J. Integr. Med. 11 309–313. 10.1007/BF02835797 PubMed DOI
Branska B., Fořtová L., Dvořáková M., Liu H., Patakova P., Zhang J., et al. (2020). Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production. Renewable Energy 145 1941–1948. 10.1016/j.renene.2019.07.094 DOI
Branska B., Pechacova Z., Kolek J., Vasylkivska M., Patakova P. (2018). Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnol. Biofuels 11:99. 10.1186/s13068-018-1096-x PubMed DOI PMC
Chen R.-J., Hung C.-M., Chen Y.-L., Wu M.-D., Yuan G.-F., Wang Y.-J. (2012). Monascuspiloin induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. J. Agric. Food. Chem. 60 7185–7193. 10.1021/jf3016927 PubMed DOI
Chen W., Chen R., Liu Q., He Y., He K., Ding X., et al. (2017). Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 8 4917–4925. 10.1039/c7sc00475c PubMed DOI PMC
Chen W., Feng Y., Molnár I., Chen F. (2019). Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments. Nat. Product Rep. 36 561–572. 10.1039/C8NP00060C PubMed DOI PMC
Chiu H.-W., Fang W.-H., Chen Y.-L., Wu M.-D., Yuan G.-F., Ho S.-Y., et al. (2012). Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One 7:e40462. 10.1371/journal.pone.0040462 PubMed DOI PMC
Commission Regulation (EU) 2019/1901, (2019). Commission Regulation (EU) 2019/1901 of 7 November 2019 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Citrinin in Food Supplements Based on Rice Fermented with Red Yeast Monascus Purpureus. Available online at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:293:FULL&from=EN
Commission Regulation (EU) No 432/2012, (2012). Commission Regulation (EU) No 432/2012 of 16May 2012 Establishing a List of Permitted Health ClaimsMade on Foods, Other Than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Available online at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0432&from=CS
Cruz-Morales P., Orellana C. A., Moutafis G., Moonen G., Rincon G., Nielsen L. K., et al. (2019). Revisiting the evolution and taxonomy of Clostridia, a phylogenomic update. Genome Biol. Evol. 11 2035–2044. 10.1093/gbe/evz096 PubMed DOI PMC
de Oliveira Filho J. W. G., Islam M. T., Ali E. S., Uddin S. J., Santos J. V. D. O., de Alencar M. V. O. B., et al. (2017). A comprehensive review on biological properties of citrinin. Food Chem. Toxicol. 110 130–141. 10.1016/j.fct.2017.10.002 PubMed DOI
EFSA Panel on Food Additives Nutrient Sources added to Food [ANS], Aguilar F., Crebelli R., Di Domenico A., Dusemund B., Frutos M. J. (2017). Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA J 15:e04786. 10.2903/j.efsa.2017.4786 PubMed DOI PMC
Fabre C. E., Santerre A. L., Loret M. O., Baberian R., Pareilleux A., Goma G., et al. (1993). Production and food applications of the red pigments of Monascus ruber. J. Food Sci. 58 1099–1102. 10.1111/j.1365-2621.1993.tb06123.x DOI
Feng Y., Chen W., Chen F. (2016). A Monascus pilosus MS-1 strain with high-yield monacolin K but no citrinin. Food Sci. Biotechnol. 25 1115–1122. 10.1007/s10068-016-0179-3 PubMed DOI PMC
Guo X., Li Y., Zhang R., Yu J., Ma X., Chen M., et al. (2019). Transcriptional regulation contributes more to Monascus pigments diversity in different strains than to DNA sequence variation. World J. Microbiol. Biotechnol. 35 1–13. 10.1007/s11274-019-2711-0 PubMed DOI
Higa Y., Kim Y.-S., Altaf-Ul-Amin M., Huang M., Ono N., Kanaya S. (2020). Divergence of metabolites in three phylogenetically close Monascus species (M. pilosus, M. ruber, and M. purpureus) based on secondary metabolite biosynthetic gene clusters. BMC Genomics 21:679. 10.1186/s12864-020-06864-9 PubMed DOI PMC
Honikel K.-O. (2008). The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 78 68–76. 10.1016/j.meatsci.2007.05.030 PubMed DOI
Kim C., Jung H., Kim Y. O., Shin C. S. (2006). Antimicrobial activities of amino acid derivatives of monascus pigments. FEMS Microbiol. Lett. 264 117–124. 10.1111/j.1574-6968.2006.00451.x PubMed DOI
Kolek J., Branska B., Drahokoupil M., Patakova P., Melzoch K. (2016). Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. FEMS Microbiol. Lett. 363:fnw031. 10.1093/femsle/fnw031 PubMed DOI
Labbe R. G., Duncan C. L. (1970). Growth from spores of Clostridium perfringens in the presence of sodium nitrite. Appl. Microbiol. 19 353–359. PubMed PMC
Leistner L., Fink-Gremmels J., Dresel J. (1991). “Monascus extract–A possible alternative to nitrite in meats,” in Proceedings of 37th International Congress of Meat Science and Technology, (Kulmbach: Federal Centre for Meat Research; ), 1252–1256.
Lotong N., Suwanarit P. (1983). Production of soy sauce koji mold spore inoculum in plastic bags. Appl. Environ. Microbiol. 46 1224–1226. 10.1128/AEM.46.5.1224-1226.1983 PubMed DOI PMC
Mohan Kumari H. P., Akhilender Naidu K., Vishwanatha S., Narasimhamurthy K., Vijayalakshmi G. (2009). Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem. Toxicol. 47 1739–1746. 10.1016/j.fct.2009.04.038 PubMed DOI
Nagler K., Setlow P., Li Y.-Q., Moeller R. (2014). High salinity alters the germination behavior of Bacillus subtilis spores with nutrient and nonnutrient germinants. Appl. Environ. Microbiol. 80 1314–1321. 10.1128/AEM.03293-13 PubMed DOI PMC
Nerandzic M. M., Sankar C. T., Setlow P., Donskey C. J. (2015). A cumulative spore killing approach: synergistic sporicidal activity of dilute peracetic acid and ethanol at low pH against Clostridium difficile and Bacillus subtilis spores. Open Forum Infect. Dis. 3:ofv206. 10.1093/ofid/ofv206 PubMed DOI PMC
Patrovsky M., Sinovska K., Branska B., Patakova P. (2019). Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or orange Monascus purpureus pigments and the mycotoxin citrinin. Food Sci. Nutr. 7 3494–3500. 10.1002/fsn3.1197 PubMed DOI PMC
Pavesi C., Flon V., Mann S., Leleu S., Prado S., Franck X. (2021). Biosynthesis of azaphilones: a review. Nat. Prod. Rep. 10.1039/D0NP00080A PubMed DOI
Seong P. N., Ba H. V., Kim Y. S., Kang S. M., Cho S. H., Kim J. H., et al. (2017). Effects of additions of Monascus and laccaic acid on the color and quality properties of nitrite-free emulsion sausage during refrigerated storage. Korean J. Food Sci. Anim. Resour. 37 10–17. 10.5851/kosfa.2017.37.1.10 PubMed DOI PMC
Setlow B., Loshon C. A., Genest P. C., Cowan A. E., Setlow C., Setlow P. (2002). Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. J. Appl. Microbiol. 92 362–375. 10.1046/j.1365-2672.2002.01540.x PubMed DOI
Setlow P. (2014). Germination of spores of Bacillus species: what we know and do not know. J. Bacteriol. 196 1297–1305. 10.1128/JB.01455-13 PubMed DOI PMC
Shi K., Chen G., Pistolozzi M., Xia F., Wu Z. (2016). Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties. Food Addit Contam. Part A 33 1396–1401. 10.1080/19440049.2016.1214289 PubMed DOI
Sofos J., Busta F., Allen C. (1979). Sodium nitrite and sorbic acid effects on Clostridium botulinum spore germination and total microbial growth in chicken frankfurter emulsions during temperature abuse. Appl. Environ. Microbiol. 37 1103–1109. 10.1128/AEM.37.6.1103-1109.1979 PubMed DOI PMC
Vendruscolo F., Tosin I., Giachini A. J., Schmidell W., Ninow J. L. (2014). Antimicrobial activity of Monascus pigments produced in submerged fermentation. J. Food Process. Preserv. 38 1860–1865. 10.1111/jfpp.12157 DOI
Yu C.-C., Wang J.-J., Lee C.-L., Lee S.-H., Pan T.-M. (2008). Safety and mutagenicity evaluation of nanoparticulate red mold rice. J. Agric. Food Chem. 56 11038–11048. 10.1021/jf801335u PubMed DOI
Yu X., Wu H., Zhang J. (2015). Effect of Monascus as a nitrite substitute on color, lipid oxidation, and proteolysis of fermented meat mince. Food Sci. Biotechnol. 24 575–581. 10.1007/s10068-015-0075-2 DOI
Zhao G.-P., Li Y.-Q., Yang J., Cui K.-Y. (2016). Antibacterial characteristics of orange pigment extracted from Monascus pigments against Escherichia coli. Czech J. Food Sci. 34 197–203. 10.17221/430/2015-CJFS DOI
Zhu B., Qi F., Wu J., Yin G., Hua J., Zhang Q., et al. (2019). Red yeast rice: a systematic review of the traditional uses, chemistry, pharmacology, and quality control of an important chinese folk medicine. Front. Pharmacol. 10:1449. 10.3389/fphar.2019.01449 PubMed DOI PMC
Purified Monascus Pigments: Biological Activities and Mechanisms of Action