Coordinated Synthesis of Pigments Differing in Side Chain Length in Monascus purpureus and Investigation of Pigments and Citrinin Relation

. 2025 Jan 22 ; 73 (3) : 2033-2043. [epub] 20250110

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39792060

The Monascus fungi have traditionally been used in Asia for food coloring. Unfortunately, the most well-known species, Monascus purpureus, very often produce mycotoxin citrinin in addition to pigments, which poses a significant problem for the use of pigments in foods. There is a step in pigment biosynthesis where a side chain of five or seven carbons is attached to the tetraketide, the product of polyketide synthase, resulting in the formation of pigments in pairs. Further, it is still unclear whether pigment and citrinin biosyntheses are related or independent. Therefore, this study is focused on the relationship between pigment and citrinin production and pigment analogues that differ in side chain length, all evaluated by the Spearman correlation test. To generate sufficient data, Monascus purpureus DBM 4360 was cultivated with different carbon and nitrogen sources and under osmotic stress induced by glucose and/or sodium chloride. The study reveals a very strong correlation between the production of five- and seven-carbon side chain pigments under all culture conditions tested for all three groups, yellow, orange, and red pigments. The correlation between pigments and citrinin depended on the group assessed and ranged from fair to very strong. While the coordinated synthesis of pigment analogues in pairs has been clearly confirmed, the relationship between pigment and citrinin production was unfortunately neither confirmed nor refuted and must be the subject of further research.

Zobrazit více v PubMed

Barbosa R. N.; Leong S. L.; Vinnere-Pettersson O.; Chen A. J.; Souza-Motta C. M.; Frisvad J. C.; et al. Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees. Studies in Mycology 2017, 86, 29–51. 10.1016/j.simyco.2017.04.001. PubMed DOI PMC

Chen W.; He Y.; Zhou Y.; Shao Y.; Feng Y.; Li M.; et al. Edible filamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics. Comprehensive Reviews in Food Science and Food Safety 2015, 14 (5), 555–567. 10.1111/1541-4337.12145. DOI

Patakova P.; Branska B.; Patrovsky M.Monascus Secondary Metabolites. In Fungal Metabolites. Reference Series in Phytochemistry, Mérillon J.-M.; Ramawat K. G., Eds.; Springer International Publishing: Cham, 2017; pp 821–851.

Rudometova N. V.; Kim I. S. Research of the physical and chemical properties and methods of Red rice (food colour) determination in sausage products. Theory and practice of meat processing 2020, 5 (4), 23–28. 10.21323/2414-438X-2020-5-4-23-28. DOI

Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA J. 2012, 10 (3), 2605.10.2903/j.efsa.2012.2605. DOI

Jia X. Q.; Xu Z. N.; Zhou L. P.; Sung C. K. Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. Metabolic Engineering 2010, 12 (1), 1–7. 10.1016/j.ymben.2009.08.003. PubMed DOI

Husakova M.; Plechata M.; Branska B.; Patakova P. Effect of a Monascus sp. red yeast rice extract on germination of bacterial spores. Front. Microbiol. 2021, 12 (1254), 68610010.3389/fmicb.2021.686100. PubMed DOI PMC

Milanda T.; Wibowo M. S.; Gusdinar T.; Dhanutirto H. Mutation and characterization of an albino mutant of Monascus sp. isolated from the Cikapundung River, Bandung. Microbiol. Indones. 2007, 1 (1), 19.10.5454/mi.1.1.5. DOI

Pavesi C.; Flon V.; Mann S.; Leleu S.; Prado S.; Franck X. Biosynthesis of azaphilones: a review. Nat. Prod. Rep. 2021, 38, 1058–1071. 10.1039/D0NP00080A. PubMed DOI

Chen W.; Chen R.; Liu Q.; He Y.; He K.; Ding X.; et al. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chemical Science 2017, 8 (7), 4917–4925. 10.1039/C7SC00475C. PubMed DOI PMC

Liang B.; Du X.-J.; Li P.; Sun C.-C.; Wang S. Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by transcriptomic analysis. Frontiers in Microbiology 2018, 9, 1374.10.3389/fmicb.2018.01374. PubMed DOI PMC

Huang Y.; Yang C.; Molnár I.; Chen S. Comparative transcriptomic analysis of key genes involved in citrinin biosynthesis in Monascus purpureus. Journal of Fungi 2023, 9 (2), 200.10.3390/jof9020200. PubMed DOI PMC

Qin X.; Xie B.; Zong X.; Yu X.; Feng Y. Selective production, relationship and controversy between Monascus pigments and citrinin. Food Bioscience 2023, 56, 10323310.1016/j.fbio.2023.103233. DOI

Lin T. F.; Demain A. L. Effect of nutrition of Monascus sp. on formation of red pigments. Appl. Microbiol. Biotechnol. 1991, 36 (1), 70–75. 10.1007/BF00164701. DOI

Feng Y.; Shao Y.; Chen F. Monascus pigments. Appl. Microbiol. Biotechnol. 2012, 96 (6), 1421–1440. 10.1007/s00253-012-4504-3. PubMed DOI

de Oliveira G. P.; de Almeida Martins B.; Lima M. T. N. S.; Takahashi J. A.Modulation of Fungal Metabolome by Biotic Stress. In Advancing Frontiers in Mycology & Mycotechnology: Basic and Applied Aspects of Fungi, Satyanarayana T.; Deshmukh S. K.; Deshpande M. V., Eds.; Springer: Singapore, 2019; pp 599–626.

Jiang X.; Qiu X.; Yang J.; Zhang S.; Liu J.; Ren J.; et al. A mutant of Monascus purpureus obtained by carbon ion beam irradiation yielded yellow pigments using various nitrogen sources. Enzyme Microb. Technol. 2023, 162, 11012110.1016/j.enzmictec.2022.110121. PubMed DOI

Schmidt-Heydt M.; Magan N.; Geisen R. Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiology Letters 2008, 284 (2), 142–149. 10.1111/j.1574-6968.2008.01182.x. PubMed DOI

Umar A.; Darwish D. B. E.; Albalwe F. M.Chapter 2 – Fungal secondary metabolites and their role in stress management. In Fungal Secondary Metabolites, Abd-Elsalam K. A.; Mohamed H. I., Eds.; Nanobiotechnology for Plant Protection; Elsevier, 2024; pp 15–56.

Chen G.; Zhao W.; Zhao L.; Song D.; Chen B.; Zhao X.; et al. Regulation of the pigment production by changing cellmorphology and gene expression of Monascus ruber in high-sugar synergistic high-salt stress fermentation. J. Appl. Microbiol. 2023, 134 (10), lxad207.10.1093/jambio/lxad207. PubMed DOI

Dikshit R.; Tallapragada P. Comparative study of Monascus sanguineus and Monascus purpureus for red pigment production under stress condition. Int. Food Res. J. 2013, 20 (3), 1235–1238.

Zhen Z.; Xiong X.; Liu Y.; Zhang J.; Wang S.; Li L.; et al. NaCl inhibits citrinin and stimulates Monascus pigments and monacolin K production. Toxins 2019, 11 (2), 118.10.3390/toxins11020118. PubMed DOI PMC

Chen G.; Yang S.; Wang C.; Shi K.; Zhao X.; Wu Z. Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation. Appl. Microbiol. Biotechnol. 2020, 104 (6), 2469–2479. 10.1007/s00253-020-10389-2. PubMed DOI

Wang M.; Huang T.; Chen G.; Wu Z. Production of water-soluble yellow pigments via high glucose stress fermentation of Monascus ruber CGMCC 10910. Appl. Microbiol. Biotechnol. 2017, 101 (8), 3121–3130. 10.1007/s00253-017-8106-y. PubMed DOI

Lin T.; Chiu S.-H.; Chen C.-C.; Lin C.-H. Investigation of monacolin K, yellow pigments, and citrinin production capabilities of Monascus purpureus and Monascus ruber (Monascus pilosus). Journal of Food and Drug Analysis 2023, 31 (1), 85–94. 10.38212/2224-6614.3438. PubMed DOI PMC

Patrovsky M.; Sinovska K.; Branska B.; Patakova P. Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or orange Monascus purpureus pigments and the mycotoxin citrinin. Food Science & Nutrition 2019, 7 (11), 3494–3500. 10.1002/fsn3.1197. PubMed DOI PMC

Kolek J.; Driml M.; Kumžák M.; Soukup P.; Szendzielarz F.; Šimera M.; et al. Use of common carp waste for pigment production by Monascus purpureus. Kvasny prumysl 2023, 69, 686–691. 10.18832/kp2023.69.686. DOI

Husakova M.; Orlandi V. T.; Bolognese F.; Branska B.; Patakova P. Screening antibacterial photodynamic effect of Monascus red yeast rice (Hong-Qu) and mycelium extracts. Curr. Microbiol. 2024, 81 (7), 183.10.1007/s00284-024-03725-6. PubMed DOI PMC

Chan Y. H. Biostatistics 104: correlational analysis. Singapore Med. J. 2003, 44 (12), 614–619. PubMed

Balakrishnan B.; Karki S.; Chiu S.-H.; Kim H.-J.; Suh J.-W.; Nam B.; et al. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 2013, 97 (14), 6337–6345. 10.1007/s00253-013-4745-9. PubMed DOI

Xiong F.; Wei J.; Zhou Y.; Shao Y.; Liu J.; Chen F. Exploring the subcellular localization of Monascus pigments biosynthases: Preliminary unraveling of the compartmentalization mechanism. Journal of Fungi 2024, 10 (6), 375.10.3390/jof10060375. PubMed DOI PMC

Choe D.; Song S. M.; Shin C. S.; Johnston T. V.; Ahn H. J.; Kim D.; et al. Production and characterization of anti-inflammatory Monascus pigment derivatives. Foods 2020, 9 (7), 858.10.3390/foods9070858. PubMed DOI PMC

Chai X.; Ai Z.; Liu J.; Guo T.; Wu J.; Bai J.; et al. Effects of pigment and citrinin biosynthesis on the metabolism and morphology of Monascus purpureus in submerged fermentation. Food Sci. Biotechnol 2020, 29 (7), 927–937. 10.1007/s10068-020-00745-3. PubMed DOI PMC

Lu F.; Liu L.; Huang Y.; Zhang X.; Wang Z. Production of Monascus pigments as extracellular crystals by cell suspension culture. Appl. Microbiol. Biotechnol. 2018, 102 (2), 677–687. 10.1007/s00253-017-8646-1. PubMed DOI

Huang T.; Wang M.; Shi K.; Chen G.; Tian X.; Wu Z. Metabolism and secretion of yellow pigment under high glucose stress with Monascus ruber. AMB Express 2017, 7 (1), 79.10.1186/s13568-017-0382-5. PubMed DOI PMC

Li T.; Zhao W.; Wang C.; Shi K.; Chen G. Regulated synthesis and metabolism of Monascus pigments in a unique environment. World J. Microbiol. Biotechnol. 2023, 39 (2), 46.10.1007/s11274-022-03486-z. PubMed DOI

Bai Y.; Zhang W.; Guo R.; Yu J.; Wang Y. Enhancement of yellow pigments production via high CaCl2 stress fermentation of Monascus purpureus. FEMS Microbiology Letters 2024, 371, fnae012.10.1093/femsle/fnae012. PubMed DOI

Gong Z.; Jiao P.; Huang F.; Zhang S.; Zhou B.; Lin Q.; et al. Separation and antioxidant activity of the water-soluble yellow Monascus pigment and its application in the preparation of functional rice noodles. LWT 2023, 185, 11517210.1016/j.lwt.2023.115172. DOI

Liu H.; Zhang J.; Lu G.; Wang F.; Shu L.; Xu H.; et al. Comparative metabolomics analysis reveals the metabolic regulation mechanism of yellow pigment overproduction by Monascus using ammonium chloride as a nitrogen source. Appl. Microbiol. Biotechnol. 2021, 105 (16), 6369–6379. 10.1007/s00253-021-11395-8. PubMed DOI

Chen M.-H.; Johns M. R. Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme Microb. Technol. 1994, 16 (7), 584–590. 10.1016/0141-0229(94)90123-6. DOI

Righetti L.; Dall’Asta C.; Bruni R.. Risk Assessment of RYR Food Supplements: Perception vs. Reality. Frontiers in Nutrition 2021, 8. doi:10.3389/fnut.2021.792529. PubMed DOI PMC

Yang J.; Chen Q.; Wang W.; Hu J.; Hu C. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation. J. Biosci. Bioeng. 2015, 119 (5), 564–569. 10.1016/j.jbiosc.2014.10.014. PubMed DOI

Zhang X.; Liu H.; Zhang M.; Chen W.; Wang C. Enhancing Monascus pellet formation for improved secondary metabolite production. Journal of Fungi 2023, 9 (11), 1120.10.3390/jof9111120. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...