Screening Antibacterial Photodynamic Effect of Monascus Red Yeast Rice (Hong-Qu) and Mycelium Extracts
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A2_FPBT_2022_016
Vysoká Škola Chemicko-technologická v Praze
PubMed
38771359
PubMed Central
PMC11108928
DOI
10.1007/s00284-024-03725-6
PII: 10.1007/s00284-024-03725-6
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky * farmakologie chemie MeSH
- biologické pigmenty farmakologie MeSH
- biologické přípravky farmakologie chemie MeSH
- fotochemoterapie MeSH
- fotosenzibilizující látky farmakologie chemie MeSH
- grampozitivní bakterie účinky léků účinky záření MeSH
- komplexní směsi farmakologie chemie MeSH
- mikrobiální testy citlivosti * MeSH
- Monascus * chemie metabolismus MeSH
- mycelium * chemie účinky záření účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- red yeast rice MeSH Prohlížeč
The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.
Zobrazit více v PubMed
Patakova P. Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol. 2013;40:169–181. doi: 10.1007/s10295-012-1216-8. PubMed DOI
Buzzelli L, Segreti A, Di Gioia D, Lemme E, Squeo MR, Nenna A, Di Gioia G. Alternative lipid lowering strategies: state-of-the-art review of red yeast rice. Fitoterapia. 2024;172:105719. doi: 10.1016/j.fitote.2023.105719. PubMed DOI
Patrovsky M, Sinovska K, Branska B, Patakova P. Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or orange Monascus purpureus pigments and the mycotoxin citrinin. Food Sci Nutr. 2019;7:3494–3500. doi: 10.1002/fsn3.1197. PubMed DOI PMC
Shi J, Qin X, Zhao Y, Sun X, Yu X, Feng Y. Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination. Process Biochem. 2022;117:19–29. doi: 10.1016/j.procbio.2022.03.003. DOI
Silva LJ, Pereira AM, Pena A, Lino CM. Citrinin in foods and supplements: a review of occurrence and analytical methodologies. Foods. 2021;10:14. doi: 10.3390/foods10010014. PubMed DOI PMC
Chen W, Chen R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnár I, Li M, Shao Y, Chen F. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci. 2017;8:4917–4925. doi: 10.1039/c7sc00475c. PubMed DOI PMC
Huang Y, Yang C, Molnár I, Chen S. Comparative transcriptomic analysis of key genes involved in citrinin biosynthesis in Monascus purpureus. J Fungi. 2023;9:200. doi: 10.3390/jof9020200. PubMed DOI PMC
Patakova P, Branska B, Patrovsky M. Monascus Secondary Metabolites. In: Mérillon JM, Ramawat KG, editors. Fungal metabolites. Reference series in phytochemistry. Cham: Springer International Publishing; 2017. pp. 821–851.
Chen W, Feng Y, Molnár I, Chen F. Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments. Nat Prod Rep. 2019;36:561–572. doi: 10.1039/C8NP00060C. PubMed DOI PMC
Martinkova L, Patáková-Jůzlová P, Křen V, Kučerová Z, Havlíček V, Olšovský P, Hovorka O, Říhová B, Veselý D, Veselá D, Ulrichová J, Přikrylová V. Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam. 1999;16:15–24. doi: 10.1080/026520399284280. PubMed DOI
Vendruscolo F, Tosin I, Giachini AJ, Schmidell W, Ninow JL. Antimicrobial activity of Monascus pigments produced in submerged fermentation. J Food Process Preserv. 2014;38:1860–1865. doi: 10.1111/jfpp.12157. DOI
Feng LH, Li YQ, Sun GJ, Zhao XZ. Antibacterial effect of orange Monascus pigment against Staphylococcus aureus. Acta Aliment. 2019;48:169–176. doi: 10.1556/066.2019.48.2.4. DOI
Husakova M, Plechata M, Branska B, Patakova P. Effect of a Monascus sp. red yeast rice extract on germination of bacterial spores. Front Microbiol. 2021 doi: 10.3389/fmicb.2021.686100. PubMed DOI PMC
Gao X, Lu X, Wang Z, Liu G, Li X. Study on the extraction and antibacterial activity of Monascin. E3S Web Conf. 2021;251:02061. doi: 10.1051/e3sconf/202125102061. DOI
Guo-Ping Z, Ying-Qiu L, Jie Y, Kai-Yu C. Antibacterial characteristics of orange pigment extracted from Monascus pigments against Escherichia coli. Czech J Food Sci. 2016;34(2016):197–203. doi: 10.17221/430/2015-CJFS. DOI
Kim C, Jung H, Kim YO, Shin CS. Antimicrobial activities of amino acid derivatives of Monascus pigments. FEMS Microbiol Lett. 2006;264:117–124. doi: 10.1111/j.1574-6968.2006.00451.x. PubMed DOI
Gökmen GG, Şılbır MS, Göksungur Y, Kışla D. Antimicrobial activity of red pigments derived from Monascus purpureus: a comparison to industrial red pigments. JSFA Rep. 2021;1:5–10. doi: 10.1002/jsf2.20. DOI
Mukherjee G, Singh SK. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem. 2011;46:188–192. doi: 10.1016/j.procbio.2010.08.006. DOI
Majhi S, Dhale MA, Honganoor Puttananjaiah M. Inhibitory effect of Monascus purpureus pigment extracts against fungi and mechanism of action. Front Sustain Food Syst. 2023 doi: 10.3389/fsufs.2023.1100961. DOI
Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T. Antimicrobial photodynamic therapy - what we know and what we don’t. Crit Rev Microbiol. 2018;44:571–589. doi: 10.1080/1040841X.2018.1467876. PubMed DOI
Polat E, Kang K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines. 2021;9:584. doi: 10.3390/biomedicines9060584. PubMed DOI PMC
Orlandi VT, Martegani E, Giaroni C, Baj A, Bolognese F. Bacterial pigments: a colorful palette reservoir for biotechnological applications. Biotechnol Appl Biochem. 2022;69:981–1001. doi: 10.1002/bab.2170. PubMed DOI PMC
Sellera FP, Sabino CP, Núñez SC, Ribeiro MS. Clinical acceptance of antimicrobial photodynamic therapy in the age of WHO global priority pathogens: so what we need to move forward? Photodiagnosis Photodyn Ther. 2022;40:103158. doi: 10.1016/j.pdpdt.2022.103158. PubMed DOI PMC
Jao Y, Ding S-J, Chen C-C. Antimicrobial photodynamic therapy for the treatment of oral infections: a systematic review. J Dent Sci. 2023;18:1453–1466. doi: 10.1016/j.jds.2023.07.002. PubMed DOI PMC
Sun Y, Ogawa R, Xiao B, Feng Y, Wu Y, Chen L, Gao X, Chen H. Antimicrobial photodynamic therapy in skin wound healing: a systematic review of animal studies. Int Wound J. 2019;17:285–299. doi: 10.1111/iwj.13269. PubMed DOI PMC
Krupka M, Bożek A, Bartusik-Aebisher D, Cieślar G, Kawczyk-Krupka A. Photodynamic therapy for the treatment of infected leg ulcers—A pilot study. Antibiotics. 2021;10:506. doi: 10.3390/antibiotics10050506. PubMed DOI PMC
Zeina B, Greenman J, Corry D, Purcell WM. Cytotoxic effects of antimicrobial photodynamic therapy on keratinocytes in vitro. Br J Dermatol. 2002;146:568–573. doi: 10.1046/j.1365-2133.2002.04623.x. PubMed DOI
Pourhajibagher M, Chiniforush N, Parker S, Shahabi S, Ghorbanzadeh R, Kharazifard MJ, Bahador A. Evaluation of antimicrobial photodynamic therapy with indocyanine green and curcumin on human gingival fibroblast cells: an in vitro photocytotoxicity investigation. Photodiagnosis Photodyn Ther. 2016;15:13–18. doi: 10.1016/j.pdpdt.2016.05.003. PubMed DOI
Campos Chaves Lamarque G, Cusicanqui Méndez DA, Arruda Matos A, José Dionísio T, Andrade Moreira Machado MA, Magalhães AC, Cardoso Oliveira R, Cruvinel T. Cytotoxic effect and apoptosis pathways activated by methylene blue-mediated photodynamic therapy in fibroblasts. Photodiagnosis Photodyn Ther. 2020;29:101654. doi: 10.1016/j.pdpdt.2020.101654. PubMed DOI
Zafari J, Karkehabadi H, Jamali S, Abbasinia H, Asnaashari M, Javani Jouni F. Evaluation of cytotoxicity impacts of combined methylene blue-mediated photodynamic therapy and intracanal antibiotic medicaments on dental stem cells. Photodiagnosis Photodyn Ther. 2024;45:103955. doi: 10.1016/j.pdpdt.2023.103955. PubMed DOI
Ferreira MB, Myiagi S, Nogales CG, Campos MS, Lage-Marques JL. Time- and concentration-dependent cytotoxicity of antibiotics used in endodontic therapy. J Appl Oral Sci. 2010;18:259–263. doi: 10.1590/S1678-77572010000300011. PubMed DOI PMC
Duewelhenke N, Krut O, Eysel P. Influence on mitochondria and cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines. Antimicrob Agents Chemother. 2007;51:54–63. doi: 10.1128/AAC.00729-05. PubMed DOI PMC
Maisch T. Photoantimicrobials—An update. Transl Biophotonics. 2020;2:e201900033. doi: 10.1002/tbio.201900033. DOI
Braga GÚL, Silva-Junior GJ, Brancini GTP, Hallsworth JE, Wainwright M. Photoantimicrobials in agriculture. J Photochem Photobiol B. 2022;235:112548. doi: 10.1016/j.jphotobiol.2022.112548. PubMed DOI
Zheng Y, Zhang Y, Chen D, Chen H, Lin L, Zheng C, Guo Y. Monascus pigment rubropunctatin: a potential dual agent for cancer chemotherapy and phototherapy. J Agric Food Chem. 2016;64:2541–2548. doi: 10.1021/acs.jafc.5b05343. PubMed DOI
Srianta I, Zubaidah E, Estiasih T, Iuchi Y, Harijono H, Yamada M. Antioxidant activity of pigments derived from Monascus purpureus fermented rice, corn, and sorghum. Int Food Res J. 2017;24:1186–1191.
Wu L, Zhou K, Chen F, Chen G, Yu Y, Lv X, Zhang W, Rao P, Ni L. Comparative study on the antioxidant activity of Monascus yellow pigments from two different types of hongqu—functional qu and coloring qu. Front Microbiol. 2021 doi: 10.3389/fmicb.2021.715295. PubMed DOI PMC
Jakus J, Farkas O. Photosensitizers and antioxidants: a way to new drugs? Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol. 2005;4:694–698. doi: 10.1039/b417254j. PubMed DOI
Wolnicka-Glubisz A, Wisniewska-Becker A. Dual action of curcumin as an anti- and pro-oxidant from a biophysical perspective. Antioxidants. 2023;12:1725. doi: 10.3390/antiox12091725. PubMed DOI PMC
Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453–1462. doi: 10.1126/science.277.5331.1453. PubMed DOI
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–964. doi: 10.1038/35023079. PubMed DOI
Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta BBA - Proteins Proteomics. 2009;1794:808–816. doi: 10.1016/j.bbapap.2008.11.005. PubMed DOI PMC
de Oliveira Filho JW, Islam MT, Ali ES, Uddin SJ, de Oliveira Santos JV, de Alencar MV, Júnior AL, Paz MF, de Brito MD, e Sousa JM. A comprehensive review on biological properties of citrinin. Food Chem Toxicol. 2017;110:130–141. doi: 10.1016/j.fct.2017.10.002. PubMed DOI
Mazumder PM, Mazumder R, Mazumder A, Sasmal DS. Antimicrobial activity of the mycotoxin citrinin obtained from the fungus Penicillium citrinum. Anc Sci Life. 2002;21:191–197. PubMed PMC
Wu L, Zhou K, Yang Z, Li J, Chen G, Wu Q, Lv X, Hu W, Rao P, Ai L, Ni L. Monascuspiloin from Monascus-fermented red mold rice alleviates alcoholic liver injury and modulates intestinal microbiota. Foods. 2022;11:3048. doi: 10.3390/foods11193048. PubMed DOI PMC
Chiu H-W, Fang W-H, Chen Y-L, Wu M-D, Yuan G-F, Ho S-Y, Wang Y-J. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS ONE. 2012;7:e40462. doi: 10.1371/journal.pone.0040462. PubMed DOI PMC
Chen R-J, Hung C-M, Chen Y-L, Wu M-D, Yuan G-F, Wang Y-J. Monascuspiloin induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. J Agric Food Chem. 2012;60:7185–7193. doi: 10.1021/jf3016927. PubMed DOI
Zheng Y, Xin Y, Shi X, Guo Y. Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J Agric Food Chem. 2010;58:9523–9528. doi: 10.1021/jf102128t. PubMed DOI
Koli SH, Suryawanshi RK, Mohite BV, Patil SV. Prospective of Monascus pigments as an additive to commercial sunscreens. Nat Prod Commun. 2019;14:1934578X19894095. doi: 10.1177/1934578X19894095. DOI
Hsu Y-W, Hsu L-C, Liang Y-H, Kuo Y-H, Pan T-M. Monaphilones A-C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J Agric Food Chem. 2010;58:8211–8216. doi: 10.1021/jf100930j. PubMed DOI
Taira J, Miyagi C, Aniya Y. Dimerumic acid as an antioxidant from the mold, Monascus anka: the inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem Pharmacol. 2002;63:1019–1026. doi: 10.1016/S0006-2952(01)00923-6. PubMed DOI
Frederick CB, Bentley MD, Shive W. Structure of triornicin, a new siderophore. Biochemistry. 1981;20:2436–2438. doi: 10.1021/bi00512a011. PubMed DOI
Hajjaj H, Klaebe A, Loret MO, Tzedakis T, Goma G, Blanc PJ. Production and identification of N-Glucosylrubropunctamine and N-Glucosylmonascorubramine from Monascus ruber and occurrence of electron donor-acceptor complexes in these red pigments. Appl Environ Microbiol. 1997;63:2671–2678. doi: 10.1128/aem.63.7.2671-2678.1997. PubMed DOI PMC
Fabre CE, Santerre AL, Loret MO, Baberian R, Pareilleux A, Goma G, Blanc PJ. Production and food applications of the red pigments of Monascus ruber. J Food Sci. 1993;58:1099–1102. doi: 10.1111/j.1365-2621.1993.tb06123.x. DOI
Zhang X, Zhao Y, Yan W, Wang P, Li J, Lu Y. Light stability and mechanism of Monascus pigment under different lights. LWT. 2024;191:115666. doi: 10.1016/j.lwt.2023.115666. DOI
Purified Monascus Pigments: Biological Activities and Mechanisms of Action