High-energy diet enhances spermatogenic function and increases sperm midpiece length in fallow deer (Dama dama) yearlings
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
31312478
PubMed Central
PMC6599764
DOI
10.1098/rsos.181972
PII: rsos181972
Knihovny.cz E-resources
- Keywords
- barley, deer, nutrition, puberty, spermatogenesis, spermatozoa,
- Publication type
- Journal Article MeSH
Nutrition is a major factor involved in the sexual development of livestock ruminants. In the male, a high-energy diet enhances the reproductive function, but its effects on the underlying processes such as spermatogenic efficiency are not yet defined. Moreover, the possible changes in sperm size due to a supplemented diet remain poorly investigated. The main goal of this study was to evaluate whether a high-energy diet affects the spermatogenic activity, epididymal sperm parameters (concentration, morphology, morphometry and acrosome integrity) and blood testosterone levels in fallow deer yearlings. For this purpose, 32 fallow deer were allocated into two groups according to their diet: control (pasture) and experimental (pasture and barley grain) groups. Fallow deer from the experimental group showed a significant increase in the Sertoli cell function and sperm midpiece length, together with a higher testicular mass, sperm concentration and percentage of normal spermatozoa than the control group (p < 0.05). We also found a tendency for higher blood testosterone levels in the animals fed with barley grain (p = 0.116). The better sperm quality found in the experimental group may be related to their higher efficiency of Sertoli cells and to an earlier onset of puberty. The results of the present work elucidate the mechanisms by which dietary supplementation enhances the male sexual development and might be useful for better practices of livestock management in seasonal breeders.
See more in PubMed
Robinson JJ, Ashworth CJ, Rooke JA, Mitchell LM, McEvoy TG. 2006. Nutrition and fertility in ruminant livestock. Anim. Feed Sci. Technol. 126, 259–276. (10.1016/j.anifeedsci.2005.08.006) DOI
Martin GB, Blache D, Miller DW, Vercoe PE. 2010. Interactions between nutrition and reproduction in the management of the mature male ruminant. Animal 4, 1214–1226. (10.1017/S1751731109991674) PubMed DOI
Rossi R, Pastorelli G, Cannata S, Corino C. 2010. Recent advances in the use of fatty acids as supplements in pig diets: a review. Anim. Feed Sci. Technol. 162, 1–11. (10.1016/j.anifeedsci.2010.08.013) DOI
Guan Y, Liang G, Hawken PAR, Meachem SJ, Malecki IA, Ham S, Stewart T, Guan LL, Martin GB. 2016. Nutrition affects Sertoli cell function but not Sertoli cell numbers in sexually mature male sheep. Reprod. Fertil. Dev. 28, 1152–1163. (10.1071/RD14368) PubMed DOI
Almeida AM, Schwalbach LMJ, Cardoso LA, Greyling JPC. 2007. Scrotal, testicular and semen characteristics of young Boer bucks fed winter veld hay: the effect of nutritional supplementation. Small Rumin. Res. 73, 216–220. (10.1016/j.smallrumres.2007.02.001) DOI
Kenny DA, Byrne CJ. 2018. Review: The effect of nutrition on timing of pubertal onset and subsequent fertility in the bull. Animal 12, s36–s44. (10.1017/S1751731118000514) PubMed DOI
Brito LFC, Barth AD, Rawlings NC, Wilde RE, Crews DH, Mir PS, Kastelic JP. 2007. Effect of nutrition during calfhood and peripubertal period on serum metabolic hormones, gonadotropins and testosterone concentrations, and on sexual development in bulls. Domest. Anim. Endocrinol. 33, 1–18. (10.1016/j.domaniend.2006.04.001) PubMed DOI
Brito LFC, Barth AD, Rawlings NC, Wilde RE, Crews DH, Mir PS, Kastelic JP. 2007. Effect of improved nutrition during calfhood on serum metabolic hormones, gonadotropins, and testosterone concentrations, and on testicular development in bulls. Domest. Anim. Endocrinol. 33, 460–469. (10.1016/j.domaniend.2006.09.004) PubMed DOI
Barth AD, Brito LFC, Kastelic JP. 2008. The effect of nutrition on sexual development of bulls. Theriogenology 70, 485–494. (10.1016/j.theriogenology.2008.05.031) PubMed DOI
Dance A, Thundathil J, Wilde R, Blondin P, Kastelic J. 2015. Enhanced early-life nutrition promotes hormone production and reproductive development in Holstein bulls. J. Dairy Sci. 98, 987–998. (10.3168/jds.2014-8564) PubMed DOI
Zhao J, Jin Y, Du M, Liu W, Ren Y, Zhang C, Zhang J.. 2017. The effect of dietary grape pomace supplementation on epididymal sperm quality and testicular antioxidant ability in ram lambs. Theriogenology 97, 50–56. (10.1016/j.theriogenology.2017.04.010) PubMed DOI
Chapman DI, Chapman NG. 1970. Preliminary observations on the reproductive cycle of male fallow deer (Dama dama L.). J. Reprod. Fertil. 21, 1–8. (10.1530/jrf.0.0210001) PubMed DOI
Bureš D, Bartoň L, Kotrba R, Hakl J. 2015. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). J. Sci. Food Agric. 95, 2299–2306. (10.1002/jsfa.6950) PubMed DOI
Chaplin RE, White RWG. 1972. The influence of age and season on the activity of the testes and epididymides of the fallow deer, Dama dama. J. Reprod. Fertil. 30, 361–369. (10.1530/jrf.0.0300361) PubMed DOI
Apollonio M, Di Vittorio I.. 2004. Feeding and reproductive behaviour in fallow bucks (Dama dama). Naturwissenschaften 91, 579–584. (10.1007/s00114-004-0574-0) PubMed DOI
Enright WJ, Spicer LJ, Kelly M, Culleton N, Prendiville DJ. 2001. Energy level in winter diets of fallow deer: effect on plasma levels of insulin-like growth factor-I and sex ratio of their offspring. Small Ruminant Res. 39, 253–259. (10.1016/S0921-4488(00)00199-1) PubMed DOI
Ros-Santaella JL, Pintus E, Garde JJ. 2015. Intramale variation in sperm size: functional significance in a polygynous mammal. PeerJ 3, e1478 (10.7717/peerj.1478) PubMed DOI PMC
Pintus E, Ros-Santaella JL, Garde JJ. 2015. Beyond testis size: links between spermatogenesis and sperm traits in a seasonal breeding mammal. PLoS ONE 10, e0139240 (10.1371/journal.pone.0139240) PubMed DOI PMC
Nikkhah A. 2012. Barley grain for ruminants: a global treasure or tragedy. J. Anim. Sci. Biotechnol. 3, 22 (10.1186/2049-1891-3-22) PubMed DOI PMC
Sariözkan S, Bucak MN, Tuncer PB, Ulutaş PA, Bilgen A. 2009. The influence of cysteine and taurine on microscopic-oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology 58, 134–138. (10.1016/j.cryobiol.2008.11.006) PubMed DOI
Dong HJ, Wu D, Xu SY, Li Q, Fang ZF, Che LQ, Wu CM, Xu XY, Lin Y. 2016. Effect of dietary supplementation with amino acids on boar sperm quality and fertility. Anim. Reprod. Sci. 172, 182–189. (10.1016/j.anireprosci.2016.08.003) PubMed DOI
Shayakhmetova GM, Bondarenko LB, Voronina AK, Kovalenko VM. 2017. Comparative investigation of methionine and novel formulation Metovitan protective effects in Wistar rats with testicular and epididymal toxicity induced by anti-tuberculosis drugs co-administration. Food Chem. Toxicol. 99, 222–230. (10.1016/j.fct.2016.12.001) PubMed DOI
Saunders PTK. 2003. Germ cell-somatic cell interactions during spermatogenesis. Reprod. Suppl. 61, 91–101. PubMed
Jančík F, Kubelková P, Kubát V, Koukolová M, Homolka P. 2017. Effects of drying procedures on chemical composition and nutritive value of alfalfa forage. S. Afr. J. Anim. Sci. 47, 96–101. (10.4314/sajas.v47i1.14) DOI
AOAC (Association of Official Analytical Chemists). 2005. Official methods of analysis of AOAC international, 18th edn, 96 pp Gaithersburg, MD: AOAC.
Van Soest PJ, Robertson JB, Lewis BA.. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. (10.3168/jds.S0022-0302(91)78551-2) PubMed DOI
Institute National de la Recherche Agronomique (INRA). 2018. INRA feeding system for ruminants, 640 pp Wageningen, The Netherlands: Wageningen Academic Publishers.
Bontems V, et al. 2004. Tables of composition and nutritional value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses and fish (eds Sauvant D, Perez JM, Tran G). Wageningen, The Netherlands: Wageningen Academic Publishers; (10.3920/978-90-8686-668-7) DOI
McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, Sinclair LA, Wilkinson RG. 2011. Animal nutrition, 7th edn, 672 pp Harlow, UK: Pearson Education Limited.
Pintus E, Ros-Santaella JL, Garde JJ. 2015. Variation of spermatogenic and Sertoli cell number detected by fine needle aspiration cytology (FNAC) in Iberian red deer during and out of the breeding season. Reprod. Fertil. Dev. 27, 812–822. (10.1071/RD13419) PubMed DOI
Roelants H, Schneider F, Göritz F, Streich J, Blottner S. 2002. Seasonal changes of spermatogonial proliferation in roe deer, demonstrated by flow cytometric analysis of c-kit receptor, in relation to follicle-stimulating hormone, luteinizing hormone, and testosterone. Biol. Reprod. 66, 305–312. (10.1095/biolreprod66.2.305) PubMed DOI
Ros-Santaella JL, Domínguez-Rebolledo AE, Garde JJ. 2014. Sperm flagellum volume determines freezability in red deer spermatozoa. PLoS ONE 9, e112382 (10.1371/journal.pone.0112382) PubMed DOI PMC
Guan Y, Malecki IA, Hawken PAR, Linden MD, Martin GB. 2014. Under-nutrition reduces spermatogenic efficiency and sperm velocity, and increases sperm DNA damage in sexually mature male sheep. Anim. Reprod. Sci. 149, 163–172. (10.1016/j.anireprosci.2014.07.014) PubMed DOI
Attia YA, Hamed RS, Bovera F, Abd El-Hamid AEE, Al-Harthi MA, Shahba HA. 2017. Semen quality, antioxidant status and reproductive performance of rabbits bucks fed milk thistle seeds and rosemary leaves. Anim. Reprod. Sci. 184, 178–186. (10.1016/j.anireprosci.2017.07.014) PubMed DOI
Dance A, Thundathil J, Blondin P, Kastelic J. 2016. Enhanced early-life nutrition of Holstein bulls increases sperm production potential without decreasing postpubertal semen quality. Theriogenology 86, 687–694. (10.1016/j.theriogenology.2016.02.022) PubMed DOI
Melo MC, Almeida FRCL, Caldeira-Brant AL, Parreira GG, Chiarini-Garcia H. 2014. Spermatogenesis recovery in protein-restricted rats subjected to a normal protein diet after weaning. Reprod. Fertil. Dev. 26, 787–796. (10.1071/RD13032) PubMed DOI
Cheah Y, Yang W. 2011. Functions of essential nutrition for high quality spermatogenesis. Adv. Biosci. Biotechnol. 2, 182–197. (10.4236/abb.2011.24029) DOI
Bunning H, Rapkin J, Belcher L, Archer CR, Jensen K, Hunt J. 2015. Protein and carbohydrate intake influence sperm number and fertility in male cockroaches, but not sperm viability. Proc. R. Soc. B 282, 20142144 (10.1098/rspb.2014.2144) PubMed DOI PMC
Dávila F, Aron S. 2017. Protein restriction affects sperm number but not sperm viability in male ants. J. Insect Physiol. 100, 71–76. (10.1016/j.jinsphys.2017.05.012) PubMed DOI
Valle S, Carpentier E, Vu B, Tsutsui K, Deviche P. 2015. Food restriction negatively affects multiple levels of the reproductive axis in male house finches, Haemorhous mexicanus. J. Exp. Biol. 218, 2694–2704. (10.1242/jeb.123323) PubMed DOI
Hess RA, França LR. 2004. Structure of the Sertoli cell. In Sertoli cell biology, 1st edn (eds Skinner MK, Griswold MD), pp. 19–40. San Diego, CA: Elsevier Academic Press.
Nakanishi Y, Shiratsuchi A. 2004. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol. Pharm. Bull. 27, 13–16. (10.1248/bpb.27.13) PubMed DOI
Berndtson WE, Igboeli G, Parker WG. 1987. The numbers of Sertoli cells in mature Holstein bulls and their relationship to quantitative aspects of spermatogenesis. Biol. Reprod. 37, 60–67. (10.1095/biolreprod37.1.60) PubMed DOI
Johnson L, Carter GK, Varner DD, Taylor TS, Blanchard TL, Rembert MS. 1994. The relationship of daily sperm production with number of Sertoli cells and testicular size in adult horses: role of primitive spermatogonia. J. Reprod. Fertil. 100, 315–321. (10.1530/jrf.0.1000315) PubMed DOI
Okwun OE, Igboeli G, Ford JJ, Lunstra DD, Johnson L. 1996. Number and function of Sertoli cells, number and yield of spermatogonia, and daily sperm production in three breeds of boar. J. Reprod. Fertil. 107, 137–149. (10.1530/JRF.0.1070137) PubMed DOI
Crisóstomo L, Alves MG, Gorga A, Sousa M, Riera MF, Galardo MN, Meroni SB, Oliveira PF. 2018. Molecular mechanisms and signaling pathways involved in the nutritional support of spermatogenesis by Sertoli cells. In Sertoli cells (eds Alves M, Oliveira P), pp. 129–155. New York, NY: Humana Press. PubMed
Rato L, Alves MG, Dias TR, Lopes G, Cavaco JE, Socorro S, Oliveira PF. 2013. High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology 1, 495–504. (10.1111/j.2047-2927.2013.00071.x) PubMed DOI
Hamada T. 1984. Importance of blood glucose and ketones in the evaluation of nutritional state of the ruminant. Jarq-Jpn. Agric. Res. Q. 18, 48–52.
Guan Y, Martin GB. 2017. Cellular and molecular responses of adult testis to changes in nutrition: novel insights from the sheep model. Reproduction 154, R133–R141. (10.1530/REP-17-0061) PubMed DOI
Sharpe RM, McKinnell C, Kivlin C, Fisher JS. 2003. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784. (10.1530/rep.0.1250769) PubMed DOI
Tarulli GA, Stanton PG, Meachem SJ. 2012. Is the adult sertoli cell terminally differentiated? Biol. Reprod. 87, 1–11. (10.1095/biolreprod.111.095091) PubMed DOI
Jia YF, et al. 2018. Obesity impairs male fertility through long-term effects on spermatogenesis. BMC Urol. 18, 42 (10.1186/s12894-018-0360-5) PubMed DOI PMC
Harstine BR, Maquivar M, Helser LA, Utt MD, Premanandan C, DeJarnette JM, Day ML. 2015. Effects of dietary energy on sexual maturation and sperm production in Holstein bulls. J. Anim. Sci. 93, 2759–2766. (10.2527/jas.2015-8952) PubMed DOI
Hötzel MJ, Markey CM, Walkden-Brown SW, Blackberry MA, Martin GB. 1998. Morphometric and endocrine analyses of the effects of nutrition on the testis of mature Merino rams. J. Reprod. Fertil. 113, 217–230. (10.1530/jrf.0.1130217) PubMed DOI
Oliveira PF, Alves MG. 2015. The Sertoli cell at a glance. In Sertoli cell metabolism and spermatogenesis (eds Oliveira PF, Alves MG), pp. 3–13. Cham, Switzerland: Springer International Publishing.
Amaral A, Lourenço B, Marques M, Ramalho-Santos J. 2013. Mitochondria functionality and sperm quality. Reproduction 146, R163–R174 (10.1530/REP-13-0178) PubMed DOI
Moraes CR, Meyers S. 2018. The sperm mitochondrion: organelle of many functions. Anim. Reprod. Sci. 194, 71–80. (10.1016/j.anireprosci.2018.03.024) PubMed DOI
Turner RM. 2006. Moving to the beat: a review of mammalian sperm motility regulation. Reprod. Fertil. Dev. 18, 25–38. (10.1071/RD05120) PubMed DOI
Bonanno VL, Schulte-Hostedde AI. 2009. Sperm competition and ejaculate investment in red squirrels (Tamiasciurus hudsonicus). Behav. Ecol. Sociobiol. 63, 835–846. (10.1007/s00265-009-0718-5) DOI
Kahrl AF, Cox RM. 2015. Diet affects ejaculate traits in a lizard with condition-dependent fertilization success. Behav. Ecol. 26, 1502–1511. (10.1093/beheco/arv105) DOI
Alavi SMH, Pšenička M, Policar T, Rodina M, Hamáčková J, Kozák P, Linhart O. 2009. Sperm quality in male Barbus barbus L. fed different diets during the spawning season. Fish Physiol. Biochem. 35, 683–693. (10.1007/s10695-009-9325-7) PubMed DOI
Zaragozá R, Renau-Piqueras J, Portolés M, Hernández-Yago J, Jordá A, Grisolía S. 1987. Rats fed prolonged high protein diets show an increase in nitrogen metabolism and liver megamitochondria. Arch. Biochem. Biophys. 258, 426–435. (10.1016/0003-9861(87)90364-X) PubMed DOI
Jordá A, Zaragozá R, Portolés M, Báguena-Cervellera R, Renau-Piqueras J. 1988. Long-term high-protein diet induces biochemical and ultrastructural changes in rat liver mitochondria. Arch. Biochem. Biophys. 265, 241–248. (10.1016/0003-9861(88)90124-5) PubMed DOI
Chauvin T, Xie F, Liu T, Nicora CD, Yang F, Camp DG, Smith RD, Roberts KPA. 2012. Systematic analysis of a deep mouse epididymal sperm proteome. Biol. Reprod. 87, 1–8. (10.1095/biolreprod.112.104208) PubMed DOI PMC
Immler S, Pryke SR, Birkhead TR, Griffith SC. 2010. Pronounced within-individual plasticity in sperm morphometry across social environments. Evolution 64, 1634–1643. (10.1111/j.1558-5646.2009.00924.x) PubMed DOI
Plant Extracts as Alternative Additives for Sperm Preservation
figshare
10.6084/m9.figshare.c.4511996