Horn size is linked to Sertoli cell efficiency and sperm size homogeneity during sexual development in common eland (Taurotragus oryx)

. 2024 ; 12 () : 1421634. [epub] 20240820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39228403

Background: In polygynous species, the development of secondary sexual characters is usually decisive for male reproductive success. However, our understanding about the links between the growth of these traits and reproductive efficiency is still elusive. Most research efforts in this topic have been also focused on adult males, although the development of some secondary sexual characters, like bovid horns, typically starts after birth, continues during the puberty and in some species, such as the common eland, slows or even stops during adulthood. In this study, we investigated the relationships between horn size and testicular function during sexual development in common elands using a comprehensive approach that considers both spermatogenic and sperm parameters. Methods: Twenty-two non-sexually mature common elands were used for the present study. Horn size, body mass, testes mass, and gonadosomatic index were assessed. Spermatogenic activity was determined by cytological and histological analyses. Sperm concentration, morphology, morphometry, and intramale variation in sperm size were evaluated on epididymal sperm samples. Cluster analysis was performed to explore the influence of age on relationships between horn size and reproductive function. Results: We found that bigger horns are associated with increased Sertoli cell efficiency and reduced intramale variation in sperm size. Both parameters were not related to one another while they have shown to be associated with enhanced sperm quality in ungulates. Moreover, horn size was positively linked to the testis mass, sperm concentration, and testicular investment in the seminiferous epithelium. Spiral length and basal circumference were the horn traits most strongly correlated with spermatogenic and sperm parameters as well as those responsible for the sexual dimorphism in this species. Cluster analysis rendered two groups: the first one including males ≤30 months old, while the second one those >30 months old. Horn development and reproductive function were still correlated within age groups, with the strongest relationship found between horn size and sperm size homogeneity in males >30 months old. Conclusion: Taken together, our results indicate that horn size can be regarded as a good index of male reproductive potential during sexual development and provide insights into the role of secondary sexual characters in sexual selection dynamics.

Zobrazit více v PubMed

Bartoň L., Bureš D., Kotrba R., Sales J. (2014). Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 96, 346–352. 10.1016/j.meatsci.2013.07.016 PubMed DOI

Benítez H. A., Lemic D., Villalobos-Leiva A., Bažok R., Órdenes-Claveria R., Pajač Živković I., et al. (2020). Breaking symmetry: fluctuating asymmetry and geometric morphometrics as tools for evaluating developmental instability under diverse agroecosystems. Symmetry 12, 1789. 10.3390/sym12111789 DOI

Brito L. F., Barth A. D., Wilde R. E., Kastelic J. P. (2012). Testicular vascular cone development and its association with scrotal temperature, semen quality, and sperm production in beef bulls. Anim. Reprod. Sci. 134, 135–140. 10.1016/j.anireprosci.2012.08.025 PubMed DOI

Brito L. F. C. (2021). “Sexual development and puberty in bulls,” in Bovine reproduction (NJ, USA: John Wiley and Sons; ), 58–78.

Bro-Jørgensen J. (2007). The intensity of sexual selection predicts weapon size in male bovids. Evolution 61, 1316–1326. 10.1111/j.1558-5646.2007.00111.x PubMed DOI

Bro-Jørgensen J., Beeston J. (2015). Multimodal signalling in an antelope: fluctuating facemasks and knee-clicks reveal the social status of eland bulls. Anim. Behav. 102, 231–239. 10.1016/j.anbehav.2015.01.027 DOI

Bro-Jørgensen J., Dabelsteen T. (2008). Knee-clicks and visual traits indicate fighting ability in eland antelopes: multiple messages and back-up signals. BMC Biol. 6, 47–48. 10.1186/1741-7007-6-47 PubMed DOI PMC

Budaev S. V. (2010). Using principal components and factor analysis in animal behaviour research: caveats and guidelines. Ethology 116, 472–480. 10.1111/j.1439-0310.2010.01758.x DOI

Cappelli J., García A. J., Kotrba R., Gambin Pozo P., Landete‐Castillejos T., Gallego L., et al. (2018). The bony horncore of the common eland (Taurotragus oryx): composition and mechanical properties of a spiral fighting structure. J. Anat. 232, 72–79. 10.1111/joa.12708 PubMed DOI PMC

Caro T. M., Graham C. M., Stoner C. J., Flores M. M. (2003). Correlates of horn and antler shape in bovids and cervids. Behav. Ecol. Sociobiol. 55, 32–41. 10.1007/s00265-003-0672-6 DOI

Chirichella R., Rocca M., Brugnoli A., Mustoni A., Apollonio M. (2020). Fluctuating asymmetry in Alpine chamois horns: an indicator of environmental stress. Evol. Ecol. 34, 573–587. 10.1007/s10682-020-10051-3 DOI

Dines J. P., Mesnick S. L., Ralls K., May-Collado L., Agnarsson I., Dean M. D. (2015). A trade-off between precopulatory and postcopulatory trait investment in male cetaceans. Evolution 69, 1560–1572. 10.1111/evo.12676 PubMed DOI

Ditchkoff S. S., Lochmiller R. L., Masters R. E., Hoofer S. R., Bussche R. A. V. D. (2001). Major‐histocompatibility‐complex‐associated variation in secondary sexual traits of white‐tailed deer (Odocoileus virginianus): evidence for good‐genes advertisement. Evolution 55, 616–625. 10.1554/0014-3820(2001)055[0616:mhcavi]2.0.co;2 PubMed DOI

Doyle J. M. (2011). Sperm depletion and a test of the phenotype-linked fertility hypothesis in gray treefrogs (Hyla versicolor). Can. J. Zool. 89, 853–858. 10.1139/Z11-060 DOI

Ezenwa V. O., Jolles A. E. (2008). Horns honestly advertise parasite infection in male and female African buffalo. Anim. Behav. 75, 2013–2021. 10.1016/j.anbehav.2007.12.013 DOI

Ferrandiz-Rovira M., Lemaître J. F., Lardy S., López B. C., Cohas A. (2014). Do pre- and post-copulatory sexually selected traits covary in large herbivores? BMC Evol. Biol. 14, 79. 10.1186/1471-2148-14-79 PubMed DOI PMC

Fuller A., Maloney S. K., Mitchell G., Mitchell D. (2004). The eland and the oryx revisited: body and brain temperatures of free-living animals. Int. Congr. Ser. 1275, 275–282. 10.1016/j.ics.2004.08.092 DOI

Geist V. (1966). The evolution of horn-like organs. Behaviour 27, 175–214. 10.1163/156853966x00155 DOI

Glazier D. S. (2022). Complications with body-size correction in comparative biology: possible solutions and an appeal for new approaches. J. Exp. Biol. 225, jeb243313. 10.1242/jeb.243313 PubMed DOI

Gutiérrez-Reinoso M. A., García-Herreros M. (2016). Normozoospermic versus teratozoospermic domestic cats: differential testicular volume, sperm morphometry, and subpopulation structure during epididymal maturation. Asian J. Androl. 18, 871–878. 10.4103/1008-682X.187583 PubMed DOI PMC

Hetem R. S., Maloney S. K., Fuller A., Mitchell D. (2016). Heterothermy in large mammals: inevitable or implemented? Biol. Rev. 91, 187–205. 10.1111/brv.12166 PubMed DOI

IUCN . The IUCN red list of threatened species (2024). Available at: https://www.iucnredlist.org/species/22055/115166135

Jeffery R. C. V., Hanks J. (1981). Age determination of eland Taurotragus oryx (Pallas, 1766) in the natal highveld. Afr. Zool. 16, 113–122. 10.1080/02541858.1981.11447743 DOI

Kekäläinen J., Pirhonen J., Taskinen J. (2014). Do highly ornamented and less parasitized males have high quality sperm? - an experimental test for parasite-induced reproductive trade-offs in European minnow (Phoxinus phoxinus). Ecol. Evol. 4, 4237–4246. 10.1002/ece3.1267 PubMed DOI PMC

Kleven O., Laskemoen T., Fossøy F., Robertson R. J., Lifjeld J. T. (2008). Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62, 494–499. 10.1111/j.1558-5646.2007.00287.x PubMed DOI

Kotrba R., Knížková I., Kunc P., Bartoš L. (2007). Comparison between the coat temperature of the eland and dairy cattle by infrared thermography. J. Therm. Biol. 32, 355–359. 10.1016/j.jtherbio.2007.05.006 DOI

Kruuk E. B., Slate J., Pemberton J. M., Brotherstone S., Guinness F., Clutton-Brock T. (2002). Antler size in red deer: heritability and selection but no evolution. Evolution 56, 1683–1695. 10.1111/j.0014-3820.2002.tb01480.x PubMed DOI

Lindström J. (1999). Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348. 10.1016/S0169-5347(99)01639-0 PubMed DOI

Lundrigan B. (1996). Morphology of horns and fighting behavior in the family Bovidae. J. Mammal. 77, 462–475. 10.2307/1382822 DOI

Lüpold S., Simmons L. W., Grueter C. C. (2019). Sexual ornaments but not weapons trade off against testes size in primates. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 286, 20182542. 10.1098/rspb.2018.2542 PubMed DOI PMC

Lüpold S., Simmons L. W., Tomkins J. L., Fitzpatrick J. L. (2015). No evidence for a trade-off between sperm length and male premating weaponry. J. Evol. Biol. 28, 2187–2195. 10.1111/jeb.12742 PubMed DOI

Lüpold S., Tomkins J. L., Simmons L. W., Fitzpatrick J. L. (2014). Female monopolization mediates the relationship between pre-and postcopulatory sexual traits. Nat. Commun. 5, 3184–3188. 10.1038/ncomms4184 PubMed DOI

Malo A. F., Garde J. J., Soler A. J., García A. J., Gomendio M., Roldan E. R. (2005a). Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol. Reprod. 72, 822–829. 10.1095/biolreprod.104.036368 PubMed DOI

Malo A. F., Roldan E. R., Garde J., Soler A. J., Gomendio M. (2005b). Antlers honestly advertise sperm production and quality. Proc. Biol. Sci. 272, 149–157. 10.1098/rspb.2004.2933 PubMed DOI PMC

Mautz B. S., Møller A. P., Jennions M. D. (2013). Do male secondary sexual characters signal ejaculate quality? A meta-analysis. Biol. Rev. Camb. Philos. Soc. 88, 669–682. 10.1111/brv.12022 PubMed DOI

Navara K. J., Anderson E. M., Edwards M. L. (2012). Comb size and color relate to sperm quality: a test of the phenotype-linked fertility hypothesis. Behav. Ecol. 23, 1036–1041. 10.1093/beheco/ars068 DOI

O'Donnell L., Smith L. B., Rebourcet D. (2022). Sertoli cells as key drivers of testis function. Semin. Cell Dev. Biol. 121, 2–9. 10.1016/j.semcdb.2021.06.016 PubMed DOI

Oliveira P. F., Alves M. G. (2015). “The Sertoli cell at a glance,” in Sertoli cell metabolism and spermatogenesis (Springer Publisher; ).

Palmer A. R. (1994). “Fluctuating asymmetry analyses: a primer,” in Developmental instability: its origins and evolutionary implications. Editor Markow T. A. (Dordrecht, Netherlands: Kluwer; ), 335–364.

Pappas L. A. (2002). Taurotragus oryx. Mamm. species 689, 1–5. 10.1644/1545-1410(2002)689<0001:to>2.0.co;2 DOI

Parker G. A. (2016). The evolution of expenditure on testes. J. Zool. 298, 3–19. 10.1111/jzo.12297 DOI

Parker G. A., Lessells C. M., Simmons L. W. (2013). Sperm competition games: a general model for precopulatory male–male competition. Evolution 67, 95–109. 10.1111/j.1558-5646.2012.01741.x PubMed DOI

Paschoal L. R. P., Zara F. J. (2022). Is there a trade-off between sperm production and sexual weaponry in the Amazon River prawn Macrobrachium amazonicum (Heller, 1862)? Zoology 153, 126029. 10.1016/j.zool.2022.126029 PubMed DOI

Pennington P. M., Gentry L. R., Pope C. E., MacLean R. A., Paccamonti D. L., Dresser B. L., et al. (2009). Characterization of the common eland (Taurotragus oryx) estrous cycle. LSU Master's Theses 1542 21, 181. 10.1071/RDv21n1Ab164 DOI

Picard K., Thomas D. W., Festa-Bianchet M., Belleville F., Laneville A. (1999). Differences in the thermal conductance of tropical and temperate bovid horns. Ecoscience 6, 148–158. 10.1080/11956860.1999.11682515 DOI

Picard K., Thomas D. W., Festa-Bianchet M., Lanthier C. (1994). Bovid horns: an important site for heat loss during winter? J. Mammal. 75, 710–713. 10.2307/1382520 DOI

Pintus E., Kadlec M., Karlasová B., Popelka M., Ros-Santaella J. L. (2021). Spermatogenic activity and sperm traits in post-pubertal and adult tomcats (Felis catus): implication of intra-male variation in sperm size. Cells 10, 624. 10.3390/cells10030624 PubMed DOI PMC

Pintus E., Ros-Santaella J. L., Garde J. J. (2014). Diagnostic value of fine needle aspiration cytology in testicular disorders of red deer (Cervus elaphus): a case report. J. Wildl. Dis. 50, 994–997. 10.7589/2013-11-304 PubMed DOI

Pintus E., Ros-Santaella J. L., Garde J. J. (2015a). Variation of spermatogenic and Sertoli cell number detected by fine needle aspiration cytology (FNAC) in Iberian red deer during and out of the breeding season. Reprod. Fertil. Dev. 27, 812–822. 10.1071/RD13419 PubMed DOI

Pintus E., Ros-Santaella J. L., Garde J. J. (2015b). Beyond testis size: links between spermatogenesis and sperm traits in a seasonal breeding mammal. PLoS One 10, e0139240. 10.1371/journal.pone.0139240 PubMed DOI PMC

Preston B. T., Stevenson I. R., Pemberton J. M., Coltman D. W., Wilson K. (2003). Overt and covert competition in a promiscuous mammal: the importance of weaponry and testes size to male reproductive success. Proc. Biol. Sci. 270, 633–640. 10.1098/rspb.2002.2268 PubMed DOI PMC

Rajak S. K., Kumaresan A., Gaurav M. K., Layek S. S., Mohanty T. K., Muhammad Aslam M. K., et al. (2014). Testicular cell indices and peripheral blood testosterone concentrations in relation to age and semen quality in crossbred (holstein friesian×tharparkar) bulls. Asian-Australas. J. Anim. Sci. 27, 1554–1561. 10.5713/ajas.2014.14139 PubMed DOI PMC

Ramm S. A., Schärer L. (2014). The evolutionary ecology of testicular function: size isn't everything. Biol. Rev. Camb. Philos. Soc. 89, 874–888. 10.1111/brv.12084 PubMed DOI

Rato L., Meneses M. J., Silva B. M., Sousa M., Alves M. G., Oliveira P. F. (2016). New insights on hormones and factors that modulate Sertoli cell metabolism. Histol. Histopathol. 31, 499–513. 10.14670/HH-11-717 PubMed DOI

Roelants H., Schneider F., Göritz F., Streich J., Blottner S. (2002). Seasonal changes of spermatogonial proliferation in roe deer, demonstrated by flow cytometric analysis of c-kit receptor, in relation to follicle-stimulating hormone, luteinizing hormone, and testosterone. Biol. Reprod. 66, 305–312. 10.1095/biolreprod66.2.305 PubMed DOI

Rogell B., Dowling D. K., Husby A. (2019). Controlling for body size leads to inferential biases in the biological sciences. Evol. Lett. 4, 73–82. 10.1002/evl3.151 PubMed DOI PMC

Rogers D. W., Denniff M., Chapman T., Fowler K., Pomiankowski A. (2008). Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis dalmanni . BMC Evol. Biol. 8, 236. 10.1186/1471-2148-8-236 PubMed DOI PMC

Roldan E. R., Cassinello J., Abaigar T., Gomendio M. (1998). Inbreeding, fluctuating asymmetry, and ejaculate quality in an endangered ungulate. Proc. Biol. Sci. 265, 243–248. 10.1098/rspb.1998.0288 PubMed DOI PMC

Ros-Santaella J. L., Domínguez-Rebolledo A. E., Garde J. J. (2014). Sperm flagellum volume determines freezability in red deer spermatozoa. PLoS One 9, e112382. 10.1371/journal.pone.0112382 PubMed DOI PMC

Ros-Santaella J. L., Kotrba R., Pintus E. (2019). High-energy diet enhances spermatogenic function and increases sperm midpiece length in fallow deer (Dama dama) yearlings. R. Soc. Open Sci. 6, 181972. 10.1098/rsos.181972 PubMed DOI PMC

Ros-Santaella J. L., Pintus E., Garde J. J. (2015). Intramale variation in sperm size: functional significance in a polygynous mammal. PeerJ 3, e1478. 10.7717/peerj.1478 PubMed DOI PMC

Šandera M., Albrecht T., Stopka P. (2013). Variation in apical hook length reflects the intensity of sperm competition in murine rodents. PLoS One 8, e68427. 10.1371/journal.pone.0068427 PubMed DOI PMC

Santiago-Moreno J., Toledano-Díaz A., Pulido-Pastor A., Gómez-Brunet A., López-Sebastián A. (2007). Horn quality and postmortem sperm parameters in Spanish ibex (Capra pyrenaica hispanica). Anim. Reprod. Sci. 99, 354–362. 10.1016/j.anireprosci.2006.06.004 PubMed DOI

Shah W., Khan R., Shah B., Khan A., Dil S., Liu W., et al. (2021). The molecular mechanism of sex hormones on Sertoli cell development and proliferation. Front. Endocrinol. 12, 648141. 10.3389/fendo.2021.648141 PubMed DOI PMC

Sheldon B. C. (1994). Male phenotype, fertility, and the pursuit of extra-pair copulations by female birds. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 257, 25–30. 10.1098/rspb.1994.0089 DOI

Simmons L. W., Lüpold S., Fitzpatrick J. L. (2017). Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964–976. 10.1016/j.tree.2017.09.011 PubMed DOI

Snook R. R., Gidaszewski N. A., Chapman T., Simmons L. W. (2013). Sexual selection and the evolution of secondary sexual traits: sex comb evolution in Drosophila. J. Evol. Biol. 26, 912–918. 10.1111/jeb.12105 PubMed DOI

Streiner D. L. (2015). Best (but oft-forgotten) practices: the multiple problems of multiplicity-whether and how to correct for many statistical tests. Am. J. Clin. Nutr. 102, 721–728. 10.3945/ajcn.115.113548 PubMed DOI

Svobodová J., Bauerová P., Eliáš J., Velová H., Vinkler M., Albrecht T. (2018). Sperm variation in great tit males (Parus major) is linked to a haematological health-related trait, but not ornamentation. J. Ornithol. 159, 815–822. 10.1007/s10336-018-1559-7 DOI

Taylor C. R., Lyman C. P. (1967). A comparative study of the environmental physiology of an East African antelope, the eland, and the Hereford steer. Physiol. Zool. 40, 280–295. 10.1086/physzool.40.3.30152865 DOI

Vágner J. A. (1974). The capture and transport of African animals. Int. Zoo. Yearb. 14, 69–73. 10.1111/j.1748-1090.1974.tb00767.x DOI

Varea-Sánchez M., Gómez Montoto L., Tourmente M., Roldan E. R. (2014). Postcopulatory sexual selection results in spermatozoa with more uniform head and flagellum sizes in rodents. PLoS One 9, e108148. 10.1371/journal.pone.0108148 PubMed DOI PMC

Vea I. M., Shingleton A. W. (2021). Network-regulated organ allometry: the developmental regulation of morphological scaling. Wiley Interdiscip. Rev. Dev. Biol. 10, e391. 10.1002/wdev.391 PubMed DOI

Willisch C. S., Biebach I., Marreros N., Ryser-Degiorgis M. P., Neuhaus P. (2015). Horn growth and reproduction in a long-lived male mammal: no compensation for poor early-life horn growth. Evol. Biol. 42, 1–11. 10.1007/s11692-014-9294-3 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace