Beyond Testis Size: Links between Spermatogenesis and Sperm Traits in a Seasonal Breeding Mammal
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26430740
PubMed Central
PMC4592251
DOI
10.1371/journal.pone.0139240
PII: PONE-D-15-25812
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- roční období * MeSH
- rozmnožování * MeSH
- spermatogeneze * MeSH
- testis anatomie a histologie fyziologie MeSH
- velikost orgánu MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spermatogenesis is a costly process that is expected to be under selection to maximise sperm quantity and quality. Testis size is often regarded as a proxy measure of sperm investment, implicitly overlooking the quantitative assessment of spermatogenesis. An enhanced understanding of testicular function, beyond testis size, may reveal further sexual traits involved in sperm quantity and quality. Here, we first estimated the inter-male variation in testicular function and sperm traits in red deer across the breeding and non-breeding seasons. Then, we analysed the relationships between the testis mass, eight parameters of spermatogenic function, and seven parameters of sperm quality. Our findings revealed that the Sertoli cell number and function parameters vary greatly between red deer males, and that spermatogenic activity co-varies with testis mass and sperm quality across the breeding and non-breeding seasons. For the first time in a seasonal breeder, we found that not only is the Sertoli cell number important in determining testis mass (r = 0.619, p = 0.007 and r = 0.248, p = 0.047 for the Sertoli cell number assessed by histology and cytology, respectively), but also sperm function (r = 0.703, p = 0.002 and r = 0.328, p = 0.012 for the Sertoli cell number assessed by histology and cytology, respectively). Testicular histology also revealed that a high Sertoli cell number per tubular cross-section is associated with high sperm production (r = 0.600, p = 0.009). Sperm production and function were also positively correlated (r = 0.384, p = 0.004), suggesting that these traits co-vary to maximise sperm fertilisation ability in red deer. In conclusion, our findings contribute to the understanding of the dynamics of spermatogenesis, and reveal new insights into the role of testicular function and the Sertoli cell number on testis size and sperm quality in red deer.
Zobrazit více v PubMed
Hess RA, Franca LR. Spermatogenesis and cycle of the seminiferous epithelium In: Cheng CY, editor. Molecular mechanisms in spermatogenesis. New York: Springer; 2008. pp. 1–15. PubMed
De Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998; 1: 1–8. (10.1093/humrep/13.suppl_1.1) PubMed DOI
Pudney J. Spermatogenesis in nonmammalian vertebrates. Microsc Res Tech. 1995; 32: 459–497. (10.1002/jemt.1070320602) PubMed DOI
Dadhich RK, Barrionuevo FJ, Real FM, Lupiañez DG, Ortega E, Burgos M, et al. Identification of live germ-cell desquamation as a major mechanism of seasonal testis regression in mammals: a study in the Iberian mole (Talpa occidentalis). Biol Reprod. 2013; 88: 1–12. PubMed
Sharpe RM. Regulation of spermatogenesis In: Knobil E, Neill JD, editors. The physiology of reproduction. San Diego: Elsevier Academic Press; 1994. pp. 1363–1434.
Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003; 125: 769–784. (10.1530/rep.0.1250769) PubMed DOI
Johnson L, Thompson DLJr, Varner DD. Role of Sertoli cell number and function on regulation of spermatogenesis. Anim Reprod Sci. 2008; 105: 23–51. (10.1016/J.ANIREPROSCI.2007.11.029) PubMed DOI
Mossman JA, Pearson JT, Moore HD, Pacey AA. Variation in mean human sperm length is linked with semen characteristics. Hum Reprod. 2013; 28: 22–32. (10.1093/humrep/des382) PubMed DOI
Rajak SK, Kumaresan A, Gaurav MK, Layek SS, Mohanty TK, Aslam MKM, et al. Testicular cell indices and peripheral blood testosterone concentrations in relation to age and semen quality in crossbred (Holstein Friesian×Tharparkar) bulls. Asian-Australas J Anim Sci. 2014; 27: 1554–1561. (10.5713/ajas.2014.14139) PubMed DOI PMC
Klonisch T, Schön J, Hombach-Klonisch S, Blottner S. The roe deer as a model for studying seasonal regulation of testis function. Int J Androl. 2006; 29: 122–128. (10.1111/J.1365-2605.2005.00603.X) PubMed DOI
Schärer L, Da Lage JL, Joly D. Evolution of testicular architecture in the Drosophilidae: a role for sperm length. BMC Evol Biol. 2008; 8: 143 (10.1186/1471-2148-8-143) PubMed DOI PMC
Lüpold S, Linz GM, Rivers JW, Westneat DF, Birkhead TR. Sperm competition selects beyond relative testes size in birds. Evolution. 2009; 63: 391–402. (10.1111/j.1558-5646.2008.00571.x.) PubMed DOI
Lüpold S, Wistuba J, Damm OS, Rivers JW, Birkhead TR. Sperm competition leads to functional adaptations in avian testes to maximize sperm quantity and quality. Reproduction. 2011; 141: 595–605. (10.1530/REP-10-0501) PubMed DOI
Rowe M, Pruett-Jones S. Sperm competition selects for sperm quantity and quality in the Australian Maluridae. PLoS One. 2011; 6(1):e15720 (10.1371/journal.pone.0015720) PubMed DOI PMC
Goeritz F, Quest M, Wagener A, Fassbender M, Broich A, Hildebrandt TB, et al. Seasonal timing of sperm production in roe deer: interrelationship among changes in ejaculate parameters, morphology and functions of testis and accessory glands. Theriogenology. 2003; 59: 1487–1502. (10.1016/S0093-691X(02)01201-3) PubMed DOI
Schulte-Hostedde AI, Millar JS. Intraspecific variation of testis size and sperm length in the yellow-pine chipmunk (Tamias amoenus): implications for sperm competition and reproductive success. Behav Ecol Sociobiol. 2004; 55: 272–277. (10.1007/s00265-003-0707-z) DOI
Gomendio M, Roldan ER. Coevolution between male ejaculates and female reproductive biology in eutherian mammals. Proc R Soc B. 1993; 252: 7–12. (10.1098/rspb.1993.0039) PubMed DOI
Gomendio M, Roldan ER. Implications of diversity in sperm size and function for sperm competition and fertility. Int J Dev Biol. 2008; 52: 439–447. (10.1387/ijdb.082595mg) PubMed DOI
Clutton-Brock TH, Guinness FE, Albon SD. Red deer: Behaviour and ecology of two sexes 1 st ed. Chicago: Chicago University Press; 1982.
Malo AF, Roldan ER, Garde J, Soler AJ, Gomendio M. Antlers honestly advertise sperm production and quality. Proc R Soc B. 2005; 272: 149–157. (10.1098/rspb.2004.2933) PubMed DOI PMC
Guinness F, Lincoln GA, Short RV. Reproductive cycle of female red deer, Cervus elaphus L. J Reprod Fertil. 1971; 27: 427–438. PubMed
Malo AF, Garde JJ, Soler AJ, García AJ, Gomendio M, Roldan ER. Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol Reprod. 2005; 72: 822–829. (10.1095/biolreprod.104.036368) PubMed DOI
Pintus E, Ros-Santaella JL, Garde JJ. Variation of spermatogenic and Sertoli cell number detected by fine needle aspiration cytology (FNAC) in Iberian red deer during and out of breeding season. Reprod Fertil Dev. 2015; 27: 812–822. (10.1071/RD13419) PubMed DOI
Martinez-Pastor F, Guerra C, Kaabi M, Garcia-Macias V, de Paz P, Alvarez M, et al. Season effect on genitalia and epididymal sperm from Iberian red deer, roe deer and Cantabrian chamois. Theriogenology. 2005; 63: 1857–1875. (10.1016/j.theriogenology.2004.08.006) PubMed DOI
Ramm SA, Schärer L. The evolutionary ecology of testicular function: size isn't everything. Biol Rev. 2014; 89: 874–888. (10.1111/brv.12084) PubMed DOI
Fernández-Santos MR, Esteso MC, Montoro V, Soler AJ, Garde JJ. Cryopreservation of Iberian red deer (Cervus elaphus hispanicus) epididymal spermatozoa: effects of egg yolk, glycerol and cooling rate. Theriogenology. 2006; 66: 1931–1942. (10.1016/j.theriogenology.2006.05.012) PubMed DOI
Domínguez-Rebolledo AE, Fernández-Santos MR, Bisbal A, Ros-Santaella JL, Ramón M, Carmona M, et al. Improving the effect of incubation and oxidative stress on thawed spermatozoa from red deer by using different antioxidant treatments. Reprod Fertil Dev. 2010; 22: 856–870. (10.1071/RD09197) PubMed DOI
Soler AJ, Garde JJ. Relationship between the characteristics of epididymal red deer spermatozoa and penetrability into zona-free hamster ova. J Androl. 2003; 24: 393–400. (10.1002/j.1939-4640.2003.tb02688.x) PubMed DOI
Vahed K, Parker DJ. The evolution of large testes: sperm competition or male mating rate? Ethology. 2012; 118: 107–117. (10.1111/j.1439-0310.2011.01991.x) DOI
Leme DP, Papa FO. Cytological identification and quantification of testicular cell types using fine needle aspiration in horses. Equine Vet J. 2000; 32: 444–446 (10.2746/042516400777591156) PubMed DOI
Segatelli TM, Franca LR, Pinheiro PFF, Almeida CCD, Martinez M, Martinez FE. Spermatogenic cycle length and spermatogenic efficiency in the gerbil (Meriones unguiculatus). J Androl. 2004; 25: 872–880. (10.1002/j.1939-4640.2004.tb03156.x) PubMed DOI
Latendresse JR, Warbrittion AR, Jonassen H & Creasy DM 2002. Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol 30 524–533. (10.1080/01926230290105721) PubMed DOI
Howroyd P, Hoyle-Thacker R, Light O, Williams D, Kleymenova E. Morphology of the fetal rat testis preserved in different fixatives. Toxicol Pathol. 2005; 33: 300–304. (10.1080/01926230590896145) PubMed DOI
Johnsen SG. Testicular biopsy score count-a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones. 1970; 1: 2–25. (10.1159/000178170) PubMed DOI
Garde JJ, Ortiz N, Garcia AJ, Gallego L, Landete-Castillejos T, Lopez A. Postmortem assessment of sperm characteristics of the red deer during the breeding season. Arch Androl. 1998; 41: 195–202. (10.3109/01485019808994891) PubMed DOI
Comizzoli P, Mauget R, Mermillod P. Assessment of in vitro fertility of deer spermatozoa by heterologous IVF with zona-free bovine oocytes. Theriogenology. 2001; 56: 261–274. (10.1016/S0093-691X(01)00561-1) PubMed DOI
Quinn G and Keough M. 2002 Experimental design and data analysis for biologists Cambridge University Press; 2002. pp. 443–472.
Budaev SV. Using Principal Components and Factor Analysis in Animal Behaviour Research: Caveats and Guidelines. Ethology. 2010; 116: 472–480. (10.1111/j.1439-0310.2010.01758.x) DOI
Berndtson WE, Igboeli G, Parker WG. The numbers of Sertoli cells in mature Holstein bulls and their relationship to quantitative aspects of spermatogenesis. Biol Reprod. 1987; 37: 60–67. (10.1095/biolreprod37.1.60) PubMed DOI
Johnson L, Carter GK, Varner DD, Taylor TS, Blanchard TL, Rembert MS. The relationship of daily sperm production with number of Sertoli cells and testicular size in adult horses: role of primitive spermatogonia. J Reprod Fertil. 1994; 100: 315–321. (10.1530/jrf.0.1000315) PubMed DOI
Okwun OE, Igboeli G, Ford JJ, Lunstra DD, Johnson L. Number and function of Sertoli cells, number and yield of spermatogonia, and daily sperm production in three breeds of boar. J Reprod Fertil. 1996; 107: 137–149. (10.1530/jrf.0.1070137) PubMed DOI
Johnson L, Varner DD, Roberts ME, Smith TL, Keillor GE, Scrutchfield WL. Efficiency of spermatogenesis: a comparative approach. Anim Reprod Sci. 2000; 60: 471–480. (10.1016/S0378-4320(00)00108-1) PubMed DOI
Holsberger DR, Cooke PS. Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res. 2005; 322: 133–140. (10.1007/s00441-005-1082-z) PubMed DOI
Griswold MD. Perspective on the function of Sertoli cells In: Skinner MK, Griswold MD, editors. Sertoli cell biology. San Diego: Elsevier Academic Press; 2005. pp. 15–18.
Feng LX, Chen Y, Dettin L, Pera RA, Herr JC, Goldberg E, et al. Generation and in vitro differentiation of a spermatogonial cell line. Science. 2002; 297: 392–395. (10.1126/science.1073162) PubMed DOI
Malo AF, Gomendio M, Garde J, Lang-Lenton B, Soler AJ, Roldan ER. Sperm design and sperm function. Biol Lett. 2006; 2: 246–249. (10.1098/rsbl.2006.0449) PubMed DOI PMC
Gomendio M, Malo AF, Garde J, Roldan ER. Sperm traits and male fertility in natural populations. Reproduction. 2007; 134: 19–29. (10.1530/REP-07-0143) PubMed DOI
Luetjens CM, Weinbauer GF, Wistuba J. Primate spermatogenesis: new insights into comparative testicular organisation, spermatogenic efficiency and endocrine control. Biol Rev Camb Philos Soc. 2005; 80: 475–488. (10.1017/S1464793105006755) PubMed DOI
Nakanishi Y, Shiratsuchi A. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol Pharm Bull. 2004; 27: 13–16. (10.1248/bpb.27.13) PubMed DOI
Neubauer K, Jewgenow K, Blottner S, Wildt DE, Pukazhenthi BS. Quantity rather than quality in teratospermic males: a histomorphometric and flow cytometric evaluation of spermatogenesis in the domestic cat (Felis catus). Biol Reprod. 2004; 71: 1517–1524. (10.1095/biolreprod.104.031062) PubMed DOI
Jewgenow K, Neubauer K, Blottner S, Schön J, Wildt DE, Pukazhenthi BS. Reduced germ cell apoptosis during spermatogenesis in the teratospermic domestic cat. J Androl. 2009; 30: 460–468. (10.2164/jandrol.108.006726) PubMed DOI
Hess RA, França LR. Structure of the Sertoli cell In: Skinner MK, Griswold MD, editors. Sertoli cell biology. San Diego: Elsevier Academic Press; 2005. pp. 19–40.
Xiong W, Wang H, Wu H, Chen Y, Han D. Apoptotic spermatogenic cells can be energy sources for Sertoli cells. Reproduction. 2009; 137: 469–479. (10.1530/REP-08-0343) PubMed DOI
Snook RR. Sperm in competition: not playing by the numbers. Trends Ecol Evol. 2005; 20: 46–53. (10.1016/j.tree.2004.10.011) PubMed DOI
Pizzari T, Parker GA. Sperm competition and sperm phenotype In: Birkhead TR, Hosken DJ, Pitnick S, editors. Sperm Biology: An Evolutionary Perspective. Oxford: Academic Press; 2009. pp. 207–245.
Fitzpatrick JL, Lüpold S. Sexual selection and the evolution of sperm quality. Mol Hum Reprod. 2014; 20: 1180–1189. (10.1093/molehr/gau067) PubMed DOI
Amaral A, Lourenço B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013; 146: 163–174. (10.1530/REP-13-0178) PubMed DOI
Dewsbury DA. Ejaculate cost and male choice. Am Nat. 1982; 119: 601–610. (10.1086/283938) DOI
Wedell N, Gage MJG, Parker GA. Sperm competition, male prudence and sperm-limited females. Trends Ecol & Evol. 2002; 17: 313–320.
Thomsen R, Soltis J, Matsubara M, Matsubayashi K, Onuma M, Takenaka O. How costly are ejaculates for Japanese macaques? Primates. 2006; 47: 272–274. (10.1007/s10329-005-0171-7) PubMed DOI
Parker GA, Pizzari T. Sperm competition and ejaculate economics. Biol Rev Camb Philos Soc 2010; 85: 897–934. (10.1111/j.1469-185X.2010.00140.x) PubMed DOI
Gómez Montoto L, Magaña C, Tourmente M, Martín-Coello J, Crespo C, Luque-Larena JJ, et al. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS One. 2011; 6(3):e18173 (10.1371/journal.pone.0018173) PubMed DOI PMC
Lüpold S. Ejaculate quality and constraints in relation to sperm competition levels among eutherian mammals. Evolution. 2013; 67: 3052–3060. (10.1111/evo.12132) PubMed DOI
Firman RC, Simmons LW. Experimental evolution of sperm quality via postcopulatory sexual selection in house mice. Evolution. 2010; 64: 1245–1256. (10.1111/j.1558-5646.2009.00894.x) PubMed DOI
Amann RP. A critical review of methods for evaluation of spermatogenesis from seminal characteristics. J Androl. 1981; 2: 37–58. (10.1002/j.1939-4640.1981.tb00595.x) DOI
Cameron E, Day T, Rowe L. Sperm competition and the evolution of ejaculate composition. Am Nat. 2007; 169: E158–E172. (10.1086/516718) PubMed DOI
Cooper TG. Sperm maturation in the epididymis: a new look at an old problem. Asian J Androl. 2007; 9: 533–539. (10.1111/j.1745-7262.2007.00285.x) PubMed DOI
Peirce EJ, Breed WG. A comparative study of sperm production in two species of Australian arid zone rodents (Pseudomys australis, Notomys alexis) with marked differences in testis size. Reproduction. 2001; 121: 239–247. (10.1530/rep.0.1210239) PubMed DOI
França LR, Ogawa T, Avarbock MR, Brinster RL, Russell LD. Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol Reprod. 1998; 59: 1371–1377. (10.1095/biolreprod59.6.1371) PubMed DOI
Cooper TG. The epididymis, cytoplasmic droplets and male fertility. Asian J Androl. 2011; 13: 130–138. (10.1038/aja.2010.97) PubMed DOI PMC
Griswold MD, McLean D. The Sertoli cell. In: Knobil E, Neill JD, editors. The physiology of reproduction. San Diego: Elsevier Academic Press; 1994. pp. 949–975.
Intramale variation in sperm size: functional significance in a polygynous mammal