Adaptive wavelet Wiener filtering of ECG signals

. 2013 Feb ; 60 (2) : 437-45. [epub] 20121120

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23192472

In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Reliable P wave detection in pathological ECG signals

. 2022 Apr 21 ; 12 (1) : 6589. [epub] 20220421

Advanced P Wave Detection in Ecg Signals During Pathology: Evaluation in Different Arrhythmia Contexts

. 2019 Dec 13 ; 9 (1) : 19053. [epub] 20191213

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace