Adaptive wavelet Wiener filtering of ECG signals
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy * MeSH
- databáze faktografické MeSH
- elektrokardiografie metody MeSH
- lidé MeSH
- poměr signál - šum MeSH
- vlnková analýza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter.
Citace poskytuje Crossref.org