Advanced P Wave Detection in Ecg Signals During Pathology: Evaluation in Different Arrhythmia Contexts
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
31836760
PubMed Central
PMC6911105
DOI
10.1038/s41598-019-55323-3
PII: 10.1038/s41598-019-55323-3
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- databáze faktografické MeSH
- elektrokardiografie * MeSH
- lidé MeSH
- počítačové zpracování signálu * MeSH
- srdeční arytmie diagnóza diagnostické zobrazování patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Reliable P wave detection is necessary for accurate and automatic electrocardiogram (ECG) analysis. Currently, methods for P wave detection in physiological conditions are well-described and efficient. However, methods for P wave detection during pathology are not generally found in the literature, or their performance is insufficient. This work introduces a novel method, based on a phasor transform, as well as innovative rules that improve P wave detection during pathology. These rules are based on the extraction of a heartbeats' morphological features and knowledge of heart manifestation during both physiological and pathological conditions. To properly evaluate the performance of the proposed algorithm in pathological conditions, a standard database with a sufficient number of reference P wave positions is needed. However, such a database did not exist. Thus, ECG experts annotated 12 chosen pathological records from the MIT-BIH Arrhythmia Database. These annotations are publicly available via Physionet. The algorithm performance was also validated using physiological records from the MIT-BIH Arrhythmia and QT databases. The results for physiological signals were Se = 98.42% and PP = 99.98%, which is comparable to other methods. For pathological signals, the proposed method reached Se = 96.40% and PP = 85.84%, which greatly outperforms other methods. This improvement represents a huge step towards fully automated analysis systems being respected by ECG experts. These systems are necessary, particularly in the area of long-term monitoring.
Zobrazit více v PubMed
Mendis, S., Puska, P. & Norrving, B. Global atlas on cardiovascular disease prevention and control (2011).
Kusumoto Fred M. ECG Interpretation: From Pathophysiology to Clinical Application. Boston, MA: Springer US; 2009.
Portet F, et al. P wave detector with PP rhythm tracking: evaluation in different arrhythmia contexts. Physiological Measurement. 2008;29:141–155. doi: 10.1088/0967-3334/29/1/010. PubMed DOI
Laguna P, Jané R, Caminal P. Automatic Detection of Wave Boundaries in Multilead ECG Signals: Validation with the CSE Database. Computers and Biomedical Research. 1994;27:45–60. doi: 10.1006/cbmr.1994.1006. PubMed DOI
Cardio Day Holter ECG. GE HealthCare. https://www.gehealthcare.co.uk/en-gb/products/diagnostic-cardiology/ambulatory-ecg (2018).
EKG Holter Cardio Track. SEIVA: Cardiology manufacture http://www.seiva.cz/products/holter-ekg/ (2018).
Biomedical Systems Century C3000 Holter System Specifications. METEC: Marketing of speciality products for cardiology laboratories and hospital wards in Denmark and Sweden http://www.metec.dk/biomedsys/specs_C3000.html (2018).
Cardio Visions Professional 24 hour Holter ECG Software for CardioMera. Meditech: 24-hour Ambulatory Blood Pressure Monitors & Holter ECG Devices http://www.meditech.hu/24-hour-holter-ecg-software-cardiomera.html (2018).
Holter ECG. AMEDTEC – your partner in function diagnosis http://www.amedtec.de/downloads/Holter%20ECG.pdf (2018).
Fisch C. Centennial of the string galvanometer and the electrocardiogram. Journal of the American College of Cardiology. 2000;36:1737–1745. doi: 10.1016/S0735-1097(00)00976-1. PubMed DOI
GOLDMAN, Mervin. Principles of Clinical Electrocardiography (Lange Medical Pubns, 1986).
Elgendi, M., Jonkman, M. & De Boer, F. P wave demarcation in electrocardiogram. 2009 IEEE 35th Annual Northeast Bioengineering Conference1-2 (2009).
Lin C, et al. Sequential beat-to-beat P and T wave delineation and waveform estimation in ECG signals: Block Gibbs sampler and marginalized particle filter. Signal Processing. 2014;104:174–187. doi: 10.1016/j.sigpro.2014.03.011. DOI
Ghaffari A, Homaeinezhad MR, Akraminia M, Atarod M, Daevaeiha M. A robust wavelet-based multi-lead electrocardiogram delineation algorithm. Medical Engineering & Physics. 2009;31:1219–1227. doi: 10.1016/j.medengphy.2009.07.017. PubMed DOI
Martinez JP, Almeida R, Olmos S, Rocha AP, Laguna P. A Wavelet-Based ECG Delineator: Evaluation on Standard Databases. IEEE Transactions on Biomedical Engineering. 2004;51:570–581. doi: 10.1109/TBME.2003.821031. PubMed DOI
Vítek, M., Hrubeš, J. & Kozumplík, J. A Wavelet-Based ECG Delineation in Multilead ECG Signals: Evaluation on the CSE Database. Proceedings of the World Congress on Medical Physics and Biomedical Engineering, 177–80 (2009).
Karimipour A, Reza AM. Real-time electrocardiogram P-QRS-T detection - delineation algorithm based on quality - supported analysis of characteristic templates. Computers in Biology and Medicine. 2014;52:153–165. doi: 10.1016/j.compbiomed.2014.07.002. PubMed DOI
Akhbari M, Shamsollahi MB, Jutten Ch. ECG. fiducial points extraction by extended Kalman filtering. Proceedings of the 36th International Conference on Telecommunications and Signal Processing. 2013;36:628–32.
Mehta SS, Lingayat NS. Development of SVM based classification techniques for the delineation of wave components in 12-lead electrocardiogram: A comparative evaluation. Biomedical Signal Processing and Control. 2008;3:341–49. doi: 10.1016/j.bspc.2008.04.002. DOI
Mehta SS, Lingayat NS. Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram: A comparative evaluation. Computer Methods and Programs in Biomedicine. 2009;93:46–60. doi: 10.1016/j.cmpb.2008.07.014. PubMed DOI
Niranjan UC, Murthy ISN. ECG component delineation by Prony’s method: A comparative evaluation. Signal Processing. 1993;31:191–202. doi: 10.1016/0165-1684(93)90065-I. DOI
Graja S, Boucher JM. Hidden Markov Tree Model Applied to ECG Delineation. IEEE Transactions on Instrumentation and Measurement. 2005;54:2163–2168. doi: 10.1109/TIM.2005.858568. DOI
Carrault G, Cordier MO, Quiniou R, Wang F. Temporal abstraction and inductive logic programming for arrhythmia recognition from electrocardiograms: A comparative evaluation. Artificial Intelligence in Medicine. 2003;28:231–63. doi: 10.1016/S0933-3657(03)00066-6. PubMed DOI
Martínez A, Alcaraz R, Rieta JJ. Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement. 2011;31:1467–85. doi: 10.1088/0967-3334/31/11/005. PubMed DOI
Maršánová, L., Němcová, A. & Smíšek, R. Detection of P wave during Second-Degree Atrioventricular Block in ECG Signals. Proceedings of the Student conference Blansko, 55–58 (2016).
Rao, et al. P- and T-wave delineation in ECG signals using parametric mixture Gaussian and dynamic programming. Biomedical Signal Processing and Control. 2019;51:328–337. doi: 10.1016/j.bspc.2019.03.001. DOI
Friganovic Kresimir, Kukolja Davor, Jovic Alan, Cifrek Mario, Krstacic Goran. Optimizing the Detection of Characteristic Waves in ECG Based on Processing Methods Combinations. IEEE Access. 2018;6:50609–50626. doi: 10.1109/ACCESS.2018.2869943. DOI
Laguna P., Mark R. G., Goldberg A. & Moody G. B. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. Proceedings of the Computers in Cardiology, 673–676 (1997)
Goldberger AL, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101:215–220. PubMed
Elgendi, M., Meo, M. & Abbott, D. A Proof-of-Concept Study: Simple and Effective Detection of P and T Waves in Arrhythmic ECG Signals. Bioengineering, 26 (2016). PubMed PMC
Smíšek R, et al. M. CSE database: extended annotations and new recommendations for ECG software testing. Medical & Biological Engineering & Computing. 2016;54:1–10. doi: 10.1007/s11517-015-1429-x. PubMed DOI
MIT-BIH Arrhythmia Database P-Wave Annotations. Physionet https://physionet.org/physiobank/database/pwave/ (2018).
Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia. Database. IEEE Engineering in Medicine and Biology Society Membership. 2001;20:45–50. doi: 10.1109/51.932724. PubMed DOI
Maršánová, L. et al. Automatic Detection of P Wave in ECG During Ventricular Extrasystoles. Proceedings of the World Congress on Medical Physics and Biomedical Engineering, 381–85 (2018).
Němcová A, Smíšek R, Maršánová L, Smital L, Vítek M. A Comparative Analysis of Methods for Evaluation of ECG Signal Quality after Compression. Biomed Research International. 2018;9:1–26. doi: 10.1155/2018/1868519. PubMed DOI PMC
Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: an open signal processing software platform. Physiological Measurement. 2016;37:38–48. doi: 10.1088/0967-3334/37/7/N38. PubMed DOI
Smital L, Vítek M, Kozumplík J, Provazník I. Adaptive Wavelet Wiener Filtering of ECG Signals. IEEE Transactions on Biomedical Engineering. 2013;60:437–445. doi: 10.1109/TBME.2012.2228482. PubMed DOI
Kligfield P, et al. Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology. J. American College of Cardiology. 2007;49:1109–1127. doi: 10.1016/j.jacc.2007.01.024. PubMed DOI
Kohler BU, Hennig C, Orglmeister R. The principles of software QRS detection. Engineering in Medicine and Biology Magazine. 2002;21:42–57. doi: 10.1109/51.993193. PubMed DOI
Maršánová L, et al. ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study. Scientific Reports. 2017;7:1–11. doi: 10.1038/s41598-017-10942-6. PubMed DOI PMC