Dishevelled enables casein kinase 1-mediated phosphorylation of Frizzled 6 required for cell membrane localization
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30309985
PubMed Central
PMC6290145
DOI
10.1074/jbc.ra118.004656
PII: S0021-9258(20)31158-3
Knihovny.cz E-zdroje
- Klíčová slova
- Dishevelled, Frizzled, G protein-coupled receptor (GPCR), GRK, WNT, casein kinase 1, cell polarity, cell signaling, phosphorylation, receptor regulation, scaffold protein, serine/threonine protein kinase,
- MeSH
- buněčná membrána metabolismus MeSH
- epitel metabolismus MeSH
- fosfoproteiny imunologie MeSH
- fosforylace MeSH
- frizzled receptory chemie metabolismus MeSH
- HEK293 buňky MeSH
- hmotnostní spektrometrie MeSH
- kasein kinasa I metabolismus MeSH
- lidé MeSH
- protein dishevelled chemie fyziologie MeSH
- protilátky imunologie MeSH
- sekvence aminokyselin MeSH
- serin metabolismus MeSH
- signální transdukce MeSH
- vejcovody metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfoproteiny MeSH
- frizzled receptory MeSH
- FZD6 protein, human MeSH Prohlížeč
- kasein kinasa I MeSH
- protein dishevelled MeSH
- protilátky MeSH
- serin MeSH
Frizzleds (FZDs) are receptors for secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, initiating an important signal transduction network in multicellular organisms. FZDs are G protein-coupled receptors (GPCRs), which are well known to be regulated by phosphorylation, leading to specific downstream signaling or receptor desensitization. The role and underlying mechanisms of FZD phosphorylation remain largely unexplored. Here, we investigated the phosphorylation of human FZD6 Using MS analysis and a phospho-state- and -site-specific antibody, we found that Ser-648, located in the FZD6 C terminus, is efficiently phosphorylated by casein kinase 1 ϵ (CK1ϵ) and that this phosphorylation requires the scaffolding protein Dishevelled (DVL). In an overexpression system, DVL1, -2, and -3 promoted CK1ϵ-mediated FZD6 phosphorylation on Ser-648. This DVL activity required an intact DEP domain and FZD-mediated recruitment of this domain to the cell membrane. Substitution of the CK1ϵ-targeted phosphomotif reduced FZD6 surface expression, suggesting that Ser-648 phosphorylation controls membrane trafficking of FZD6 Phospho-Ser-648 FZD6 immunoreactivity in human fallopian tube epithelium was predominantly apical, associated with cilia in a subset of epithelial cells, compared with the total FZD6 protein expression, suggesting that FZD6 phosphorylation contributes to asymmetric localization of receptor function within the cell and to epithelial polarity. Given the key role of FZD6 in planar cell polarity, our results raise the possibility that asymmetric phosphorylation of FZD6 rather than asymmetric protein distribution accounts for polarized receptor signaling.
Zobrazit více v PubMed
Tobin A. B. (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br. J. Pharmacol. 153, Suppl. 1, S167–S176 10.1038/sj.bjp.0707662 PubMed DOI PMC
Yang Z., Yang F., Zhang D., Liu Z., Lin A., Liu C., Xiao P., Yu X., and Sun J. P. (2017) Phosphorylation of G protein-coupled receptors: from the barcode hypothesis to the flute model. Mol. Pharmacol. 92, 201–210 10.1124/mol.116.107839 PubMed DOI
Reiter E., and Lefkowitz R. J. (2006) GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165 10.1016/j.tem.2006.03.008 PubMed DOI
Gao C., and Chen Y. G. (2010) Dishevelled: the hub of Wnt signaling. Cell. Signal. 22, 717–727 10.1016/j.cellsig.2009.11.021 PubMed DOI
Mlodzik M. (2016) The Dishevelled protein family: still rather a mystery after over 20 years of molecular studies. Curr. Top. Dev. Biol. 117, 75–91 10.1016/bs.ctdb.2015.11.027 PubMed DOI PMC
Gammons M. V., Rutherford T. J., Steinhart Z., Angers S., and Bienz M. (2016) Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. J. Cell Sci. 129, 3892–3902 10.1242/jcs.195685 PubMed DOI PMC
Gammons M. V., Renko M., Johnson C. M., Rutherford T. J., and Bienz M. (2016) Wnt signalosome assembly by DEP domain swapping of Dishevelled. Mol. Cell 64, 92–104 10.1016/j.molcel.2016.08.026 PubMed DOI PMC
Umbhauer M., Djiane A., Goisset C., Penzo-Méndez A., Riou J. F., Boucaut J. C., and Shi D. L. (2000) The C-terminal cytoplasmic Lys-Thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/β-catenin signalling. EMBO J. 19, 4944–4954 10.1093/emboj/19.18.4944 PubMed DOI PMC
Tauriello D. V., Jordens I., Kirchner K., Slootstra J. W., Kruitwagen T., Bouwman B. A., Noutsou M., Rüdiger S. G., Schwamborn K., Schambony A., and Maurice M. M. (2012) Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc. Natl. Acad. Sci. U.S.A. 109, E812–E820 10.1073/pnas.1114802109 PubMed DOI PMC
Pau M. S., Gao S., Malbon C. C., Wang H. Y., and Bertalovitz A. C. (2015) The intracellular loop 2 F328S Frizzled-4 mutation implicated in familial exudative vitreoretinopathy impairs Dishevelled recruitment. J. Mol. Signal. 10, 5 10.5334/1750-2187-10-6 PubMed DOI PMC
Strakova K., Matricon P., Yokota C., Arthofer E., Bernatik O., Rodriguez D., Arenas E., Carlsson J., Bryja V., and Schulte G. (2017) The tyrosine Y250(2.39) in Frizzled 4 defines a conserved motif important for structural integrity of the receptor and recruitment of Disheveled. Cell. Signal. 38, 85–96 10.1016/j.cellsig.2017.06.018 PubMed DOI
Dijksterhuis J. P., Petersen J., and Schulte G. (2014) WNT/Frizzled signaling: receptor-ligand selectivity with focus on FZD-G protein signaling and its physiological relevance. Br. J. Pharmacol. 171, 1195–1209 10.1111/bph.12364 PubMed DOI PMC
Schulte G., and Bryja V. (2007) The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 518–525 10.1016/j.tips.2007.09.001 PubMed DOI
Schulte G. (2010) International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol. Rev. 62, 632–667 10.1124/pr.110.002931 PubMed DOI
Koval A., Purvanov V., Egger-Adam D., and Katanaev V. L. (2011) Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem. Pharmacol. 82, 1311–1319 10.1016/j.bcp.2011.06.005 PubMed DOI
Djiane A., Yogev S., and Mlodzik M. (2005) The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 121, 621–631 10.1016/j.cell.2005.03.014 PubMed DOI
Shafer B., Onishi K., Lo C., Colakoglu G., and Zou Y. (2011) Vangl2 promotes Wnt/planar cell polarity-like signaling by antagonizing Dvl1-mediated feedback inhibition in growth cone guidance. Dev. Cell 20, 177–191 10.1016/j.devcel.2011.01.002 PubMed DOI PMC
Yanfeng W. A., Tan C., Fagan R. J., and Klein P. S. (2006) Phosphorylation of frizzled-3. J. Biol. Chem. 281, 11603–11609 10.1074/jbc.M600713200 PubMed DOI
Onishi K., Shafer B., Lo C., Tissir F., Goffinet A. M., and Zou Y. (2013) Antagonistic functions of Dishevelleds regulate Frizzled3 endocytosis via filopodia tips in Wnt-mediated growth cone guidance. J. Neurosci. 33, 19071–19085 10.1523/JNEUROSCI.2800-13.2013 PubMed DOI PMC
Regard J. B., Sato I. T., and Coughlin S. R. (2008) Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 10.1016/j.cell.2008.08.040 PubMed DOI PMC
Corda G., and Sala A. (2017) Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis 6, e364 10.1038/oncsis.2017.69 PubMed DOI PMC
Kilander M. B., Petersen J., Andressen K. W., Ganji R. S., Levy F. O., Schuster J., Dahl N., Bryja V., and Schulte G. (2014) Disheveled regulates precoupling of heterotrimeric G proteins to Frizzled 6. FASEB J. 28, 2293–2305 10.1096/fj.13-246363 PubMed DOI
Kilander M. B., Dahlström J., and Schulte G. (2014) Assessment of Frizzled 6 membrane mobility by FRAP supports G protein coupling and reveals WNT-Frizzled selectivity. Cell. Signal. 26, 1943–1949 10.1016/j.cellsig.2014.05.012 PubMed DOI
Wang Y., Guo N., and Nathans J. (2006) The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J. Neurosci. 26, 2147–2156 10.1523/JNEUROSCI.4698-05.2005 PubMed DOI PMC
Guo N., Hawkins C., and Nathans J. (2004) Frizzled6 controls hair patterning in mice. Proc. Natl. Acad. Sci. U.S.A. 101, 9277–9281 10.1073/pnas.0402802101 PubMed DOI PMC
Golan T., Yaniv A., Bafico A., Liu G., and Gazit A. (2004) The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt·β-catenin signaling cascade. J. Biol. Chem. 279, 14879–14888 10.1074/jbc.M306421200 PubMed DOI
Hua Z. L., Chang H., Wang Y., Smallwood P. M., and Nathans J. (2014) Partial interchangeability of Fz3 and Fz6 in tissue polarity signaling for epithelial orientation and axon growth and guidance. Development 141, 3944–3954 10.1242/dev.110189 PubMed DOI PMC
Cui C. Y., Klar J., Georgii-Heming P., Fröjmark A. S., Baig S. M., Schlessinger D., and Dahl N. (2013) Frizzled6 deficiency disrupts the differentiation process of nail development. J. Invest. Dermatol. 133, 1990–1997 10.1038/jid.2013.84 PubMed DOI PMC
Naz G., Pasternack S. M., Perrin C., Mattheisen M., Refke M., Khan S., Gul A., Simons M., Ahmad W., and Betz R. C. (2012) FZD6 encoding the Wnt receptor frizzled 6 is mutated in autosomal-recessive nail dysplasia. Br. J. Dermatol. 166, 1088–1094 10.1111/j.1365-2133.2011.10800.x PubMed DOI
Fröjmark A. S., Schuster J., Sobol M., Entesarian M., Kilander M. B. C., Gabrikova D., Nawaz S., Baig S. M., Schulte G., Klar J., and Dahl N. (2011) Mutations in Frizzled 6 cause isolated autosomal-recessive nail dysplasia. Am. J. Hum. Genet. 88, 852–860 10.1016/j.ajhg.2011.05.013 PubMed DOI PMC
Wang Y., Thekdi N., Smallwood P. M., Macke J. P., and Nathans J. (2002) Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J. Neurosci. 22, 8563–8573 10.1523/JNEUROSCI.22-19-08563.2002 PubMed DOI PMC
Wang Y., Chang H., Rattner A., and Nathans J. (2016) Frizzled receptors in development and disease. Curr. Top. Dev. Biol. 117, 113–139 10.1016/bs.ctdb.2015.11.028 PubMed DOI PMC
Schulte G. (2010) Molecular pharmacology of Frizzleds—with implications for possible therapy, in GPCR Molecular Pharmacology and Drug Targeting (Gilchrist A., ed) John Wiley and Sons, Hoboken, NJ
Balla S., Thapar V., Verma S., Luong T., Faghri T., Huang C. H., Rajasekaran S., del Campo J. J., Shinn J. H., Mohler W. A., Maciejewski M. W., Gryk M. R., Piccirillo B., Schiller S. R., and Schiller M. R. (2006) Minimotif Miner: a tool for investigating protein function. Nat. Methods 3, 175–177 10.1038/nmeth856 PubMed DOI
Petersen J., Wright S. C., Rodríguez D., Matricon P., Lahav N., Vromen A., Friedler A., Strömqvist J., Wennmalm S., Carlsson J., and Schulte G. (2017) Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. Nat. Commun. 8, 226 10.1038/s41467-017-00253-9 PubMed DOI PMC
Zhou X. E., He Y., de Waal P. W., Gao X., Kang Y., Van Eps N., Yin Y., Pal K., Goswami D., White T. A., Barty A., Latorraca N. R., Chapman H. N., Hubbell W. L., Dror R. O., et al. (2017) Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170, 457–469.e13 10.1016/j.cell.2017.07.002 PubMed DOI PMC
Cong F., Schweizer L., and Varmus H. (2004) Casein kinase Iϵ modulates the signaling specificities of dishevelled. Mol. Cell. Biol. 24, 2000–2011 10.1128/MCB.24.5.2000-2011.2004 PubMed DOI PMC
Bernatik O., Ganji R. S., Dijksterhuis J. P., Konik P., Cervenka I., Polonio T., Krejci P., Schulte G., and Bryja V. (2011) Sequential activation and inactivation of Dishevelled in the Wnt/β-catenin pathway by casein kinases. J. Biol. Chem. 286, 10396–10410 10.1074/jbc.M110.169870 PubMed DOI PMC
Bryja V., Schulte G., Rawal N., Grahn A., and Arenas E. (2007) Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J. Cell Sci. 120, 586–595 10.1242/jcs.03368 PubMed DOI
Cervenka I., Valnohova J., Bernatik O., Harnos J., Radsetoulal M., Sedova K., Hanakova K., Potesil D., Sedlackova M., Salasova A., Steinhart Z., Angers S., Schulte G., Hampl A., Zdrahal Z., et al. (2016) Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins. Proc. Natl. Acad. Sci. U.S.A. 113, 9304–9309 10.1073/pnas.1608783113 PubMed DOI PMC
Schwarz-Romond T., Fiedler M., Shibata N., Butler P. J., Kikuchi A., Higuchi Y., and Bienz M. (2007) The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat. Struct. Mol. Biol. 14, 484–492 10.1038/nsmb1247 PubMed DOI
Fiedler M., Mendoza-Topaz C., Rutherford T. J., Mieszczanek J., and Bienz M. (2011) Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proc. Natl. Acad. Sci. U.S.A. 108, 1937–1942 10.1073/pnas.1017063108 PubMed DOI PMC
Axelrod J. D., Miller J. R., Shulman J. M., Moon R. T., and Perrimon N. (1998) Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 12, 2610–2622 10.1101/gad.12.16.2610 PubMed DOI PMC
Wong H. C., Mao J., Nguyen J. T., Srinivas S., Zhang W., Liu B., Li L., Wu D., and Zheng J. (2000) Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat. Struct. Biol. 7, 1178–1184 10.1038/82047 PubMed DOI PMC
Paclikova P., Bernatik O., Radaszkiewicz T. W., and Bryja V. (2017) N-terminal part of Dishevelled DEP domain is required for Wnt/β-catenin signaling in mammalian cells. Mol. Cell. Biol. 37, e00145–17 10.1128/MCB.00145-17 PubMed DOI PMC
Uhlén M., Fagerberg L., Hallström B. M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson Å., Kampf C., Sjöstedt E., Asplund A., Olsson I., Edlund K., Lundberg E., Navani S., Szigyarto C. A., et al. (2015) Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 10.1126/science.1260419 PubMed DOI
Strutt H., Price M. A., and Strutt D. (2006) Planar polarity is positively regulated by casein kinase Iϵ in Drosophila. Curr. Biol. 16, 1329–1336 10.1016/j.cub.2006.04.041 PubMed DOI
Bernatík O., Šedová K., Schille C., Ganji R. S., Červenka I., Trantírek L., Schambony A., Zdráhal Z., and Bryja V. (2014) Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1 and frizzled5. J. Biol. Chem. 289, 23520–23533 10.1074/jbc.M114.590638 PubMed DOI PMC
Bryja V., Gradl D., Schambony A., Arenas E., and Schulte G. (2007) β-Arrestin is a necessary component of Wnt/β-catenin signaling in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 104, 6690–6695 10.1073/pnas.0611356104 PubMed DOI PMC
Bryja V., Schambony A., Cajánek L., Dominguez I., Arenas E., and Schulte G. (2008) β-Arrestin and casein kinase 1/2 define distinct branches of non-canonical WNT signalling pathways. EMBO Rep. 9, 1244–1250 10.1038/embor.2008.193 PubMed DOI PMC
Bryja V., Schulte G., and Arenas E. (2007) Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate β-catenin. Cell. Signal. 19, 610–616 10.1016/j.cellsig.2006.08.011 PubMed DOI
Kaucká M., Plevová K., Pavlová S., Janovská P., Mishra A., Verner J., Procházková J., Krejcí P., Kotasková J., Ovesná P., Tichy B., Brychtová Y., Doubek M., Kozubík A., Mayer J., et al. (2013) The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res. 73, 1491–1501 10.1158/0008-5472.CAN-12-1752 PubMed DOI
Witte F., Bernatik O., Kirchner K., Masek J., Mahl A., Krejci P., Mundlos S., Schambony A., Bryja V., and Stricker S. (2010) Negative regulation of Wnt signaling mediated by CK1-phosphorylated Dishevelled via Ror2. FASEB J. 24, 2417–2426 10.1096/fj.09-150615 PubMed DOI
Komolov K. E., Du Y., Duc N. M., Betz R. M., Rodrigues J. P. G. L. M., Leib R. D., Patra D., Skiniotis G., Adams C. M., Dror R. O., Chung K. Y., Kobilka B. K., and Benovic J. L. (2017) Structural and functional analysis of a β2-adrenergic receptor complex with GRK5. Cell 169, 407–421.e16 10.1016/j.cell.2017.03.047 PubMed DOI PMC
Chen M., Philipp M., Wang J., Premont R. T., Garrison T. R., Caron M. G., Lefkowitz R. J., and Chen W. (2009) G Protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J. Biol. Chem. 284, 35040–35048 10.1074/jbc.M109.047456 PubMed DOI PMC
Simons M., Gault W. J., Gotthardt D., Rohatgi R., Klein T. J., Shao Y., Lee H. J., Wu A. L., Fang Y., Satlin L. M., Dow J. T., Chen J., Zheng J., Boutros M., and Mlodzik M. (2009) Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nat. Cell Biol. 11, 286–294 10.1038/ncb1836 PubMed DOI PMC
Ma T., Li B., Wang R., Lau P. K., Huang Y., Jiang L., Schekman R., and Guo Y. (2018) A mechanism for differential sorting of the planar cell polarity proteins Frizzled6 and Vangl2 at the trans-Golgi network. J. Biol. Chem. 293, 8410–8427 10.1074/jbc.RA118.001906 PubMed DOI PMC
Chen W., ten Berge D., Brown J., Ahn S., Hu L. A., Miller W. E., Caron M. G., Barak L. S., Nusse R., and Lefkowitz R. J. (2003) Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 1391–1394 10.1126/science.1082808 PubMed DOI
Schulte G., Schambony A., and Bryja V. (2010) β-Arrestins—scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? Br. J. Pharmacol. 159, 1051–1058 10.1111/j.1476-5381.2009.00466.x PubMed DOI PMC
Arthofer E., Hot B., Petersen J., Strakova K., Jäger S., Grundmann M., Kostenis E., Gutkind J. S., and Schulte G. (2016) WNT stimulation dissociates a Frizzled 4 inactive-state complex with Gα12/13. Mol. Pharmacol. 90, 447–459 10.1124/mol.116.104919 PubMed DOI PMC
Vizcaíno J. A., Csordas A., del-Toro N., Dianes J. A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., Xu Q. W., Wang R., and Hermjakob H. (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 10.1093/nar/gkv1145 PubMed DOI PMC
Efficient cloning of linear DNA inserts (ECOLI) into plasmids using site-directed mutagenesis
Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling