Efficient cloning of linear DNA inserts (ECOLI) into plasmids using site-directed mutagenesis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/J/0004/2021
Grant Agency of Masaryk University
PubMed
39284917
PubMed Central
PMC11405386
DOI
10.1038/s41598-024-72169-6
PII: 10.1038/s41598-024-72169-6
Knihovny.cz E-zdroje
- Klíčová slova
- Dishevelled, DNA cloning, In vitro DNA assembly, Mutagenesis, PCR, Plasmid-based cloning, Site-directed mutagenesis,
- MeSH
- DNA genetika MeSH
- klonování DNA * metody MeSH
- mutageneze cílená * metody MeSH
- plazmidy * genetika MeSH
- polymerázová řetězová reakce metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
This study introduces a novel cost-effective technique for cloning of linear DNA plasmid inserts, aiming to address the associated expenses linked with popular in vitro DNA assembly methods. Specifically, we introduce ECOLI (Efficient Cloning Of Linear Inserts), a method utilizing a PCR product-based site-directed mutagenesis. In comparison to other established in vitro DNA assembly methods, our approach is without the need for costly synthesis or specialized kits for recombination or restriction sites. ECOLI offers a fast, efficient, and economical alternative for cloning inserts up to several hundred nucleotides into plasmid constructs, thus enhancing cloning accessibility and efficiency. This method can enhance molecular biology research, as we briefly demonstrated on the Dishevelled gene from the WNT signaling pathway.
Zobrazit více v PubMed
Cohen, S. N. DNA cloning: A personal view after 40 years. Proc. Natl. Acad. Sci. USA110(39), 15521–15529 (2013). 10.1073/pnas.1313397110 PubMed DOI PMC
McKinnell, R. G. & Di Berardino, M. A. The biology of cloning: History and rationale. BioScience49(11), 875–885 (1999).10.2307/1313647 DOI
Alberts, B. et al. Isolating, cloning, and sequencing DNA. In Molecular Biology of the Cell 4th edn (Garland Science, 2002).
Chong, Z. X., Yeap, S. K. & Ho, W. Y. Transfection types, methods and strategies: A technical review. PeerJ9, e11165 (2021). 10.7717/peerj.11165 PubMed DOI PMC
Kim, T. K. & Eberwine, J. H. Mammalian cell transfection: The present and the future. Anal. Bioanal. Chem.397(8), 3173–3178 (2010). 10.1007/s00216-010-3821-6 PubMed DOI PMC
Stepanenko, A. A. & Heng, H. H. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. Mutat. Res. Rev. Mutat. Res.773, 91–103 (2017). 10.1016/j.mrrev.2017.05.002 PubMed DOI
Kwon, H. et al. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials156, 172–193 (2018). 10.1016/j.biomaterials.2017.11.034 PubMed DOI
Sive, H. L., Grainger, R. M. & Harland, R. M. Microinjection of Xenopus oocytes. Cold Spring Harb. Protoc.2010(12), 5536 (2010).10.1101/pdb.prot5536 PubMed DOI
Lino, C. A. et al. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv.25(1), 1234–1257 (2018). 10.1080/10717544.2018.1474964 PubMed DOI PMC
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337(6096), 816–821 (2012). 10.1126/science.1225829 PubMed DOI PMC
Fu, C. et al. Hot Fusion: An efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS ONE9(12), e115318 (2014). 10.1371/journal.pone.0115318 PubMed DOI PMC
Wang, W., Zheng, G. & Lu, Y. Recent advances in strategies for the cloning of natural product biosynthetic gene clusters. Front. Bioeng. Biotechnol.9, 692797 (2021). 10.3389/fbioe.2021.692797 PubMed DOI PMC
Sharma, M. et al. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal.47, 52–64 (2018). 10.1016/j.cellsig.2018.03.004 PubMed DOI PMC
Gao, C. & Chen, Y. G. Dishevelled: The hub of Wnt signaling. Cell Signal.22(5), 717–727 (2010). 10.1016/j.cellsig.2009.11.021 PubMed DOI
Mlodzik, M. The dishevelled protein family: Still rather a mystery after over 20 years of molecular studies. Curr. Top. Dev. Biol.117, 75-91. 10.1016/bs.ctdb.2015.11.027 (2016). 10.1016/bs.ctdb.2015.11.027 PubMed DOI PMC
Paclikova, P. et al. Roles of individual human Dishevelled paralogs in the Wnt signalling pathways. Cell Signal.85, 110058 (2021). 10.1016/j.cellsig.2021.110058 PubMed DOI
Strakova, K. et al. Dishevelled enables casein kinase 1-mediated phosphorylation of Frizzled 6 required for cell membrane localization. J. Biol. Chem.293(48), 18477–18493 (2018). 10.1074/jbc.RA118.004656 PubMed DOI PMC
Bernatik, O. et al. Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1ϵ and frizzled5. J. Biol. Chem.289(34), 23520–23533 (2014). 10.1074/jbc.M114.590638 PubMed DOI PMC
Korinek, V. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science275(5307), 1784–1787 (1997). 10.1126/science.275.5307.1784 PubMed DOI
Quan, J. & Tian, J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat. Protoc.6(2), 242–251 (2011). 10.1038/nprot.2010.181 PubMed DOI
Obradovic, J. et al. Optimization of PCR conditions for amplification of GC-Rich EGFR promoter sequence. J. Clin. Lab. Anal.27(6), 487–493 (2013). 10.1002/jcla.21632 PubMed DOI PMC
Bebenek, A. & Ziuzia-Graczyk, I. Fidelity of DNA replication-a matter of proofreading. Curr. Genet.64(5), 985–996 (2018). 10.1007/s00294-018-0820-1 PubMed DOI PMC