Experimental and theoretical perspectives of the Noyori-Ikariya asymmetric transfer hydrogenation of imines

. 2014 May 28 ; 19 (6) : 6987-7007. [epub] 20140528

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24879612

The asymmetric transfer hydrogenation (ATH) of imines catalyzed by the Noyori-Ikariya [RuCl(η6-arene)(N-arylsulfonyl-DPEN)] (DPEN=1,2-diphenylethylene-1,2-diamine) half-sandwich complexes is a research topic that is still being intensively developed. This article focuses on selected aspects of this catalytic system. First, a great deal of attention is devoted to the N-arylsulfonyl moiety of the catalysts in terms of its interaction with protonated imines (substrates) and amines (components of the hydrogen-donor mixture). The second part is oriented toward the role of the η6-coordinated arene. The final part concerns the imine substrate structural modifications and their importance in connection with ATH. Throughout the text, the summary of known findings is complemented with newly-presented ones, which have been approached both experimentally and computationally.

Zobrazit více v PubMed

Ivanov I., Nikolova S., Aladjov D., Stefanova I., Zagorchev P. Synthesis and contractile activity of substituted 1,2,3,4-tetrahydroisoquinolines. Molecules. 2011;16:7019–7042. doi: 10.3390/molecules16087019. PubMed DOI PMC

Whaley W.M., Govindachari T.R. The Pictet-Spengler synthesis of tetrahydroisoquinolines and related compounds. In: Adams R., editor. Organic Reactions. Volume 6. John Wiley & Sons, Inc.; New York, NY, USA: 1951. pp. 151–190.

Whaley W.M., Govindachari T.R. Preparation of 3,4-dihydroisoquinolines and related compounds by the Bischler-Napieralski reaction. In: Adams R., editor. Organic Reactions. Volume 6. John Wiley & Sons, Inc.; New York, NY, USA: 1951. pp. 74–150.

Lorenz H., Seidel-Morgenstern A. Processes to separate enantiomers. Angew. Chemie. Int. Ed. 2014;53:1218–1250. doi: 10.1002/anie.201302823. PubMed DOI

Gawley R.E., Aubé J. Principles of Asymmetric Synthesis. 2nd ed. Elsevier; Oxford, UK: 2012.

Ojima I. In: Catalytic Asymmetric Synthesis. 3rd ed. Ojima I., editor. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2010.

Seayad J., Seayad A.M., List B. Catalytic asymmetric Pictet-Spengler reaction. J. Am. Chem. Soc. 2006;128:1086–1087. doi: 10.1021/ja057444l. PubMed DOI

Noyori R., Hashiguchi S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 1997;30:97–102. doi: 10.1021/ar9502341. DOI

Václavík J., Kačer P., Kuzma M., Červený L. Opportunities offered by chiral η6-arene/N-arylsulfonyl-diamine-RuII catalysts in the asymmetric transfer hydrogenation of ketones and imines. Molecules. 2011;16:5460–5495. doi: 10.3390/molecules16075460. PubMed DOI PMC

Václavík J., Šot P., Vilhanová B., Pecháček J., Kuzma M., Kačer P. Practical aspects and mechanism of asymmetric hydrogenation with chiral half-sandwich complexes. Molecules. 2013;18:6804–6828. doi: 10.3390/molecules18066804. PubMed DOI PMC

Wu X., Li X., King F., Xiao J. Insight into and practical application of pH-controlled asymmetric transfer hydrogenation of aromatic ketones in water. Angew. Chem. Int. Ed. 2005;44:3407–3411. doi: 10.1002/anie.200500023. PubMed DOI

Soni R., Cheung F.K., Clarkson G.C., Martins J.E.D., Graham M.A., Wills M. The importance of the N-H bond in Ru/TsDPEN complexes for asymmetric transfer hydrogenation of ketones and imines. Org. Biomol. Chem. 2011;9:3290–3294. doi: 10.1039/c1ob05208j. PubMed DOI

Uematsu N., Fujii A., Hashiguchi S., Ikariya T., Noyori R. Asymmetric transfer hydrogenation of imines. J. Am. Chem. Soc. 1996;118:4916–4917. doi: 10.1021/ja960364k. DOI

Fujii A., Hashiguchi S., Uematsu N., Ikariya T., Noyori R. Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid−triethylamine mixture. J. Am. Chem. Soc. 1996;118:2521–2522. doi: 10.1021/ja954126l. DOI

Wu X., Li X., Hems W., King F., Xiao J. Accelerated asymmetric transfer hydrogenation of aromatic ketones in water. Org. Biomol. Chem. 2004;2:1818–1821. doi: 10.1039/b403627a. PubMed DOI

Hashiguchi S., Fujii A., Takehara J., Ikariya T., Noyori R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(II) complexes. J. Am. Chem. Soc. 1995;117:7562–7563. doi: 10.1021/ja00133a037. DOI

Haack K.-J., Hashiguchi S., Fujii A., Ikariya T., Noyori R. The catalyst precursor, catalyst, and intermediate in the Ru(II)-promoted asymmetric hydrogen transfer between alcohols and ketones. Angew. Chem. Int. Ed. Engl. 1997;36:285–288. doi: 10.1002/anie.199702851. DOI

Wu Z., Perez M., Scalone M., Ayad T., Ratovelomanana-Vidal V. Ruthenium-catalyzed asymmetric transfer hydrogenation of 1-aryl-substituted dihydroisoquinolines: Access to valuable chiral 1-aryl-tetrahydroisoquinoline scaffolds. Angew. Chem. Int. Ed. Engl. 2013;52:4925–4928. doi: 10.1002/anie.201301134. PubMed DOI

Ohkuma T., Utsumi N., Watanabe M., Tsutsumi K., Arai N., Murata K. Asymmetric hydrogenation of α-hydroxy ketones catalyzed by MsDPEN-Cp*Ir(III) complex. Org. Lett. 2007;9:2565–2567. doi: 10.1021/ol070964w. PubMed DOI

Chen F., Ding Z., Qin J., Wang T., He Y., Fan Q. Highly effective asymmetric hydrogenation of cyclic N-alkyl imines with chiral cationic Ru-MsDPEN catalysts. Org. Lett. 2011;13:4348–4351. doi: 10.1021/ol201679f. PubMed DOI

Li X., Blacker J., Houson I., Wu X., Xiao J. An efficient Ir(III) catalyst for the asymmetric transfer hydrogenation of ketones in neat water. Synlett. 2006;2006:1155–1160. doi: 10.1055/s-2006-932490. DOI

Yin L., Zheng Y., Jia X., Li X., Chan A.S.C. Efficient and promising asymmetric preparation of enantiopure tolvaptan via transfer hydrogenation with robust catalysts. Tetrahedron: Asymmetry. 2010;21:2390–2393. doi: 10.1016/j.tetasy.2010.08.016. DOI

Lu C., Luo Z., Huang L., Li X. The Ru-catalyzed enantioselective preparation of chiral halohydrins and their application in the synthesis of (R)-clorprenaline and (S)-sotalol. Tetrahedron: Asymmetry. 2011;22:722–727. doi: 10.1016/j.tetasy.2011.04.017. DOI

Luo Z., Qin F., Yan S., Li X. An efficient and promising method to prepare Ladostigil (TV3326) via asymmetric transfer hydrogenation catalyzed by Ru–Cs-DPEN in an HCOONa–H2O–surfactant system. Tetrahedron: Asymmetry. 2012;23:333–338. doi: 10.1016/j.tetasy.2012.02.022. DOI

Přech J., Václavík J., Šot P., Pecháček J., Vilhanová B., Januščák J., Syslová K., Pažout R., Maixner J., Zápal J., et al. Asymmetric transfer hydrogenation of 1-phenyl dihydroisoquinolines using Ru(II) diamine catalysts. Catal. Commun. 2013;36:67–70. doi: 10.1016/j.catcom.2013.03.004. DOI

Mohar B., Valleix A., Desmurs J.-R., Felemez M., Wagner A., Mioskowski C. Highly enantioselective synthesis via dynamic kinetic resolution under transfer hydrogenation using Ru(η6-arene)-N.-perfluorosulfonyl-1,2-diamine catalysts: A first insight into the relationship of the ligand’s pKa and the catalyst activity. Chem. Commun. 2001:2572–2573.

Šterk D., Stephan M.S., Mohar B. New chiral N-(N,N-dialkylamino)sulfamoyl-1,2-diamine ligands for highly enantioselective transfer hydrogenation of ketones. Tetrahedron: Asymmetry. 2002;13:2605–2608. doi: 10.1016/S0957-4166(02)00659-6. DOI

Šterk D., Stephan M., Mohar B. Highly enantioselective transfer hydrogenation of fluoroalkyl ketones. Org. Lett. 2006;8:5935–5938. doi: 10.1021/ol062358r. PubMed DOI

Strotman N.A., Baxter C.A., Brands K.M.J., Cleator E., Krska S.W., Reamer R.A., Wallace D.J., Wright T.J. Reaction development and mechanistic study of a ruthenium catalyzed intramolecular asymmetric reductive amination en route to the dual Orexin inhibitor Suvorexant (MK-4305) J. Am. Chem. Soc. 2011;133:8362–8371. doi: 10.1021/ja202358f. PubMed DOI

Šterk D., Stephan M.S., Mohar B. Transfer hydrogenation of activated ketones using novel chiral Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes. Tetrahedron Lett. 2004;45:535–537. doi: 10.1016/j.tetlet.2003.10.201. DOI

Martins J.E.D., Wills M. Ir(III) complexes of diamine ligands for asymmetric ketone hydrogenation. Tetrahedron. 2009;65:5782–5786. doi: 10.1016/j.tet.2009.05.012. DOI

Åberg J.B., Samec J.S.M., Bäckvall J.-E. Mechanistic investigation on the hydrogenation of imines by [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3). Experimental support for an ionic pathway. Chem. Commun. 2006:2771–2773. PubMed

Martins J.E.D., Clarkson G.J., Wills M. Ru(II) complexes of N-alkylated TsDPEN ligands in asymmetric transfer hydrogenation of ketones and imines. Org. Lett. 2009;11:847–850. doi: 10.1021/ol802801p. PubMed DOI

Václavík J., Kuzma M., Přech J., Kačer P. Asymmetric transfer hydrogenation of imines and ketones using chiral RuIICl(η6-p-cymene)[(S,S)-N-TsDPEN] as a catalyst: A computational study. Organometallics. 2011;30:4822–4829. doi: 10.1021/om200263d. DOI

Muñoz Robles V., Vidossich P., Lledós A., Ward T.R., Maréchal J.-D. Computational insights on an artificial imine reductase based on the biotin−streptavidin technology. ACS Catal. 2014;4:833–842. doi: 10.1021/cs400921n. DOI

Kuzma M., Václavík J., Novák P., Přech J., Januščák J., Červený J., Pecháček J., Šot P., Vilhanová B., Matoušek V., et al. New insight into the role of a base in the mechanism of imine transfer hydrogenation on a Ru(II) half-sandwich complex. Dalton Trans. 2013;42:5174–5182. doi: 10.1039/c3dt32733g. PubMed DOI

Blackmond D.G., Ropic M., Stefinovic M. Kinetic studies of the asymmetric transfer hydrogenation of imines with formic acid catalyzed by Rh-diamine catalysts. Org. Proc. Res. Dev. 2006;10:457–463. doi: 10.1021/op060033k. DOI

Dokalik A., Kalchhauser H., Mikenda W., Schweng G. NMR spectra of nitrogen-containing compounds. Correlations between experimental and GIAO calculated data. Magn. Reson. Chem. 1999;37:895–902. doi: 10.1002/(SICI)1097-458X(199912)37:12<895::AID-MRC581>3.0.CO;2-7. DOI

Rao N.S., Rao G.B., Murthy B.N., Das M.M., Prabhakar T., Lalitha M. Natural abundance nitrogen-15 nuclear magnetic resonance spectral studies on selected donors. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2002;58:2737–2757. doi: 10.1016/S1386-1425(02)00016-1. PubMed DOI

Marek R., Lyčka A. 15N-NMR spectroscopy in structural analysis. Curr. Org. Chem. 2002;6:35–66. doi: 10.2174/1385272023374643. DOI

Pecháček J., Šot P., Václavík J., Kuzma M., Kačer P. (Department of Organic Technology, Institute of Chemical Technology, Czech Republic and Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20, Prague, Czech Republic). 2014. Unpublished results.

Pecháček J., Václavík J., Přech J., Šot P., Januščák J., Vilhanová B., Vavřík J., Kuzma M., Kačer P. Asymmetric transfer hydrogenation of imines catalyzed by a Noyori-type Ru(II) complex – a parametric study. Tetrahedron: Asymmetry. 2013;24:233–239. doi: 10.1016/j.tetasy.2013.01.010. DOI

Přech J., Matoušek V., Václavík J., Pecháček J., Syslová K., Šot P., Januščák J., Vilhanová B., Kuzma M., Kačer P. Determination of enantiomeric composition of substituted tetrahydroisoquinolines based on derivatization with menthyl chloroformate. Am. J. Anal. Chem. 2013;4:125–133. doi: 10.4236/ajac.2013.43017. DOI

Yamakawa M., Yamada I., Noyori R. CH/π Attraction: The origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral η6arene-ruthenium(II) complexes. Angew. Chem. Int. Ed. 2001;40:2818–2821. doi: 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y. PubMed DOI

Arai N., Satoh H., Utsumi N., Murata K. Asymmetric hydrogenation of alkynyl ketones with the η6-arene/TsDPEN-ruthenium (II) catalyst. Org. Lett. 2013;15:3030–3033. doi: 10.1021/ol4012184. PubMed DOI

Fang Z., Wills M. Asymmetric transfer hydrogenation of functionalized acetylenic ketones. J. Org. Chem. 2013;78:8594–8605. doi: 10.1021/jo401284c. PubMed DOI

Fang Z., Wills M. Asymmetric reduction of diynones and the total synthesis of (S.)-Panaxjapyne A. Org. Lett. 2014;16:374–377. PubMed

Dub P.A., Ikariya T. Quantum chemical calculations with the inclusion of nonspecific and specific solvation: Asymmetric transfer hydrogenation with bifunctional ruthenium catalysts. J. Am. Chem. Soc. 2013;135:2604–2619. doi: 10.1021/ja3097674. PubMed DOI

Takehara J., Hashiguchi S., Fujii A., Inoue S.-I., Ikariya T., Noyori R. Amino alcohol effects on the ruthenium(II)-catalysed asymmetric transfer hydrogenation of ketones in propan-2-ol. Chem. Commun. 1996:233–234.

Bennett M.A., Smith A.K. Arene ruthenium (II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium(II) trichloride. J. Chem. Soc. Dalt. Trans. 1974:233–241. doi: 10.1039/dt9740000233. DOI

Cheung F.K., Hayes A.M., Morris D.J., Wills M. The use of a [4 + 2] cycloaddition reaction for the preparation of a series of “tethered” Ru(II)-diamine and aminoalcohol complexes. Org. Biomol. Chem. 2007;5:1093–1103. doi: 10.1039/b700744b. PubMed DOI

Touge T., Hakamata T., Hideki N., Kobayashi T., Sayo N., Saito T., Kayaki Y., Ikariya T. Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation. J. Am. Chem. Soc. 2011;133:14960–14963. PubMed

Bennett M.A., Matheson T.W., Robertson G.B., Smith A.K., Tucker P.A. Highly fluxional arene cyclooctatetraene complexes of zerovalent iron, ruthenium, and osmium. Single-crystal X-ray ctudy of (Cyclooctatetraene)(hexamethylbenzene)ruthenium(0), Ru(η6-HMB)(1–4-η-COT) Inorg. Chem. 1980;19:1014–1021.

Hull J.W., Gladfelter W.L. η4-Bonding in (arene) ruthenium complexes of octamethylnaphthalene. Organometallics. 1984;3:605–613. doi: 10.1021/om00082a018. DOI

Soni R., Jolley K.E., Clarkson G.J., Wills M. Direct formation of tethered Ru(II) catalysts using arene exchange. Org. Lett. 2013;15:5110–5113. doi: 10.1021/ol4024979. PubMed DOI PMC

Šot P., Vilhanová B., Pecháček J., Václavík J., Januščák J., Zápal J., Kuzma M., Kačer P. Role of the aromatic ligand in the asymmetric transfer hydrogenation of C=N bond on chiral Ru Noyori’s catalysts. J. Organomet. Chem. 2014 submitted.

Cheng P., Huang N., Jiang Z.-Y., Zhang Q., Zheng Y.-T., Chen J.-J., Zhang X.-M., Ma Y.-B. 1-Aryl-tetrahydroisoquinoline analogs as active anti-HIV agents in vitro. Bioorg. Med. Chem. Lett. 2008;18:2475–2478. doi: 10.1016/j.bmcl.2008.02.040. PubMed DOI

Christopher J.A., Atkinson F.L., Bax B.D., Brown M.J.B., Champigny A.C., Chuang T.T., Jones E.J., Mosley J.E., Musgrave J.R. 1-Aryl-3,4-dihydroisoquinoline inhibitors of JNK3. Bioorg. Med. Chem. Lett. 2009;19:2230–2234. doi: 10.1016/j.bmcl.2009.02.098. PubMed DOI

Gitto R., Caruso R., Orlando V., Quartarone S., Barreca M.L., Ferreri G., Russo E., de Sarro G., Chimirri A. Synthesis and anticonvulsant properties of tetrahydroisoquinoline derivatives. IlFarmaco. 2004;59:7–12. doi: 10.1016/j.farmac.2003.10.003. PubMed DOI

Abrams P., Andersson K.E. Muscarinic receptor antagonists for overactive bladder. BJU Int. 2007;100:987–1006. doi: 10.1111/j.1464-410X.2007.07205.x. PubMed DOI

Vedejs E., Trapencieris P., Suna E. Substituted isoquinolines by Noyori transfer hydrogenation: Enantioselective synthesis of chiral diamines containing an aniline subunit. J. Org. Chem. 1999;64:6724–6729. doi: 10.1021/jo990594s. PubMed DOI

Wu J., Wang F., Ma Y., Cui X., Cun L., Zhu J., Deng J., Yu B. Asymmetric transfer hydrogenation of imines and iminiums catalyzed by a water-soluble catalyst in water. Chem. Commun. 2006:1766–1768. PubMed

Chang M., Li W., Zhang X. A highly efficient and enantioselective access to tetrahydroisoquinoline alkaloids: Asymmetric hydrogenation with an iridium catalyst. Angew. Chemie. Int. Ed. 2011;50:10679–10681. doi: 10.1002/anie.201104476. PubMed DOI

Núñez-Rico J.L., Vidal-Ferran A. Ir(P−OP)]-Catalyzed aymmetric hydrogenation of diversely substituted C=N-containing heterocycles. Org. Lett. 2013;15:2066–2069. doi: 10.1021/ol400854a. PubMed DOI

Šot P., Kuzma M., Kačer P. (Department of Organic Technology, Institute of Chemical Technology, Czech Republic and Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20, Prague, Czech Republic). 2014. Unpublished results.

Rappoport D., Furche F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010;133:134105. doi: 10.1063/1.3484283. PubMed DOI

Samano V., Ray J.A., Thompson J.B., Mook R.A., Jung D.K., Koble C.S., Martin M.T., Bigham E.C., Regitz C.S., Feldman P.L., et al. Synthesis of ultra-short-acting neuromuscular blocker GW 0430: A remarkably stereo- and regioselective Tetrahydroisoquinolinium. Org. Lett. 1999;1:1993–1996. doi: 10.1021/ol9911573. PubMed DOI

Vilhanová B., Matoušek V., Václavík J., Syslová K., Přech J., Pecháček J., Šot P., Januščák J., Toman J., Zápal J., et al. Two optimized synthetic pathways toward a chiral precursor of Mivacurium chloride and other skeletal muscle relaxants. Tetrahedron: Asymmetry. 2013;24:50–55. doi: 10.1016/j.tetasy.2012.11.012. DOI

Kuzma M. (Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20, Prague, Czech Republic). 2014. Unpublished results.

Budnikova M.V, Rubinov D.B., Mikhal’chuk A.L. Annelation of 3,4-dihydroisoquinolines with 3-acylthiotetronic acids: Synthesis and properties of 8-aza-16-thiagona-12,17-diones and 3,4-dihydroisoquinolinium 3-acetylthiotetronate. Chem. Heterocycl. Compd. 2002;38:929–939. doi: 10.1023/A:1020917429301. DOI

Martin N.H., Champion S.L., Belt P.B. Regiospecific oxidation of substituted 1-benzyl-3,4-dihydroisoquinolines using singlet oxygen. Tetrahedron Lett. 1980;21:2613–2616. doi: 10.1016/S0040-4039(00)92819-3. DOI

Martin N.H., Jefford C.W. Evidence for a charge-transfer mechanism in the photo-oxygenation of an enamine. Tetrahedron Lett. 1981;22:3949–3952. doi: 10.1016/S0040-4039(01)82034-7. DOI

Martin N.H., Jefford C.W. Synthesis and photo-oxygenation of some substituted 1-benzyl-3,4-dihydroisoquinolines. Mechanism of enamine photo-oxygenation. Helv. Chim. Acta. 1982;65:762–774. doi: 10.1002/hlca.19820650314. DOI

Pitacco G., Valentin E. Oxidation and reduction of enamines. In: Rappoport Z., editor. The Chemistry of Enamines. John Wiley & Sons, Inc.; Chichester, UK: 1994. pp. 923–992.

Weisbach J.A., Kirkpatrick J.L., Macko E., Douglas B. Synthesis and parmacology of some α-oxy- and α-hydroxy-1-benzyltetrahydroisoquinolines. J. Med. Chem. 1968;11:752–760. PubMed

Lebœuf M., Ranaivo A., Cavé A., Moskowitz H. La velucryptine, nouvel alcaloïde isoquinoléique isolé de Cryptocarya velutinosta. J. Nat. Prod. 1989;52:516–521. doi: 10.1021/np50063a009. DOI

Cho S.-D., Kweon D.-H., Kang Y.-J., Lee S.-G., Lee W.S., Yoon Y.-J. Synthesis of 6,7-dimethoxy-1-halobenzyl-1,2,3,4-tetrahydroisoquinolines. J. Heterocycl. Chem. 1999;36:1151–1156. doi: 10.1002/jhet.5570360507. DOI

Shklyaev Y.V., Yeltsov M.A., Rozhkova Y.S., Tolstikov A.G., Dembitsky V.M. A new approach to synthesis of 3,3-dialkyl-3,4-dihydroisoquinoline derivatives. Heteroat. Chem. 2004;15:486–493. doi: 10.1002/hc.20049. DOI

Amaravathi M., Kumari L.K., Pardhasaradhi M. Oxidation of 1-benzyl-3,4-dihydroisoquinolines using active manganese-dioxide. Indian J. Chem. Sect. B. 1983;22B:1246–1247.

Hubert M., Herrmann R. Oxidation of imines by selenium dioxide. Z. Naturforsch. B. 1986;41B:1260–1264.

Andreu I., Cabedo N., Atassi G., Pierré A., Caignard D.H., Renard P., Cortes D., Bermejo A. An efficient method for the preparation of antitumoral α-keto-imines benzyldihydroisoquinolines by selective benzylic oxidation with C/Pd in acetonitrile. Tetrahedron Lett. 2002;43:757–759. doi: 10.1016/S0040-4039(01)02257-2. DOI

Bermejo A., Andreu I., Suvire F., Léonce S., Caignard D.H., Renard P., Pierré A., Enriz R.D., Cortes D., Cabedo N. Syntheses and antitumor targeting G1 phase of the cell cycle of benzoyldihydroisoquinolines and related 1-substituted isoquinolines. J. Med. Chem. 2002;45:5058–5068. doi: 10.1021/jm020831a. PubMed DOI

McMahon R.M., Thornber C.W., Ruchirawat S. Rearrangement of 1-(α-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinolines to 1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepines. J. Chem. Soc. Perkin Trans. 1. 1982:2163–2167.

Canonica L., Galliani G., Rindone B., Tollari S., Andreoni V., Galli E. The microbial oxygenation of the benzylisoquinoline alkaloid laudanosine. Experientia. 1983;39:1273–1275. doi: 10.1007/BF01990366. PubMed DOI

Šot P., Kuzma M., Václavík J., Pecháček J., Přech J., Januščák J., Kačer P. Asymmetric transfer hydrogenation of acetophenone N-benzylimine using [RuIICl(S,S)-N-(TsDPEN)η6-(p-cymene)]: A DFT study. Organometallics. 2012;31:6496–6499. doi: 10.1021/om300413n. DOI

Chen F., Wang T., He Y., Ding Z., Li Z., Xu L., Fan Q.-H. Asymmetric hydrogenation of N-alkyl ketimines with phosphine-free, chiral, cationic Ru-MsDPEN catalysts. Chem. Eur. J. 2011;17:1109–1113. PubMed

Chen F., Ding Z., He Y., Qin J., Wang T., Fan Q.-H. Asymmetric hydrogenation of N-alkyl and N-aryl ketimines using chiral cationic Ru(diamine) complexes as catalysts: The counteranion and solvent effects, and substrate scope. Tetrahedron. 2012;68:5248–5257. doi: 10.1016/j.tet.2012.03.019. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...