Experimental and theoretical perspectives of the Noyori-Ikariya asymmetric transfer hydrogenation of imines
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
24879612
PubMed Central
PMC6272002
DOI
10.3390/molecules19066987
PII: molecules19066987
Knihovny.cz E-zdroje
- MeSH
- hydrogenace MeSH
- iminy chemie MeSH
- katalýza MeSH
- molekulární struktura MeSH
- ruthenium chemie MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- iminy MeSH
- ruthenium MeSH
The asymmetric transfer hydrogenation (ATH) of imines catalyzed by the Noyori-Ikariya [RuCl(η6-arene)(N-arylsulfonyl-DPEN)] (DPEN=1,2-diphenylethylene-1,2-diamine) half-sandwich complexes is a research topic that is still being intensively developed. This article focuses on selected aspects of this catalytic system. First, a great deal of attention is devoted to the N-arylsulfonyl moiety of the catalysts in terms of its interaction with protonated imines (substrates) and amines (components of the hydrogen-donor mixture). The second part is oriented toward the role of the η6-coordinated arene. The final part concerns the imine substrate structural modifications and their importance in connection with ATH. Throughout the text, the summary of known findings is complemented with newly-presented ones, which have been approached both experimentally and computationally.
Zobrazit více v PubMed
Ivanov I., Nikolova S., Aladjov D., Stefanova I., Zagorchev P. Synthesis and contractile activity of substituted 1,2,3,4-tetrahydroisoquinolines. Molecules. 2011;16:7019–7042. doi: 10.3390/molecules16087019. PubMed DOI PMC
Whaley W.M., Govindachari T.R. The Pictet-Spengler synthesis of tetrahydroisoquinolines and related compounds. In: Adams R., editor. Organic Reactions. Volume 6. John Wiley & Sons, Inc.; New York, NY, USA: 1951. pp. 151–190.
Whaley W.M., Govindachari T.R. Preparation of 3,4-dihydroisoquinolines and related compounds by the Bischler-Napieralski reaction. In: Adams R., editor. Organic Reactions. Volume 6. John Wiley & Sons, Inc.; New York, NY, USA: 1951. pp. 74–150.
Lorenz H., Seidel-Morgenstern A. Processes to separate enantiomers. Angew. Chemie. Int. Ed. 2014;53:1218–1250. doi: 10.1002/anie.201302823. PubMed DOI
Gawley R.E., Aubé J. Principles of Asymmetric Synthesis. 2nd ed. Elsevier; Oxford, UK: 2012.
Ojima I. In: Catalytic Asymmetric Synthesis. 3rd ed. Ojima I., editor. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2010.
Seayad J., Seayad A.M., List B. Catalytic asymmetric Pictet-Spengler reaction. J. Am. Chem. Soc. 2006;128:1086–1087. doi: 10.1021/ja057444l. PubMed DOI
Noyori R., Hashiguchi S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 1997;30:97–102. doi: 10.1021/ar9502341. DOI
Václavík J., Kačer P., Kuzma M., Červený L. Opportunities offered by chiral η6-arene/N-arylsulfonyl-diamine-RuII catalysts in the asymmetric transfer hydrogenation of ketones and imines. Molecules. 2011;16:5460–5495. doi: 10.3390/molecules16075460. PubMed DOI PMC
Václavík J., Šot P., Vilhanová B., Pecháček J., Kuzma M., Kačer P. Practical aspects and mechanism of asymmetric hydrogenation with chiral half-sandwich complexes. Molecules. 2013;18:6804–6828. doi: 10.3390/molecules18066804. PubMed DOI PMC
Wu X., Li X., King F., Xiao J. Insight into and practical application of pH-controlled asymmetric transfer hydrogenation of aromatic ketones in water. Angew. Chem. Int. Ed. 2005;44:3407–3411. doi: 10.1002/anie.200500023. PubMed DOI
Soni R., Cheung F.K., Clarkson G.C., Martins J.E.D., Graham M.A., Wills M. The importance of the N-H bond in Ru/TsDPEN complexes for asymmetric transfer hydrogenation of ketones and imines. Org. Biomol. Chem. 2011;9:3290–3294. doi: 10.1039/c1ob05208j. PubMed DOI
Uematsu N., Fujii A., Hashiguchi S., Ikariya T., Noyori R. Asymmetric transfer hydrogenation of imines. J. Am. Chem. Soc. 1996;118:4916–4917. doi: 10.1021/ja960364k. DOI
Fujii A., Hashiguchi S., Uematsu N., Ikariya T., Noyori R. Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid−triethylamine mixture. J. Am. Chem. Soc. 1996;118:2521–2522. doi: 10.1021/ja954126l. DOI
Wu X., Li X., Hems W., King F., Xiao J. Accelerated asymmetric transfer hydrogenation of aromatic ketones in water. Org. Biomol. Chem. 2004;2:1818–1821. doi: 10.1039/b403627a. PubMed DOI
Hashiguchi S., Fujii A., Takehara J., Ikariya T., Noyori R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium(II) complexes. J. Am. Chem. Soc. 1995;117:7562–7563. doi: 10.1021/ja00133a037. DOI
Haack K.-J., Hashiguchi S., Fujii A., Ikariya T., Noyori R. The catalyst precursor, catalyst, and intermediate in the Ru(II)-promoted asymmetric hydrogen transfer between alcohols and ketones. Angew. Chem. Int. Ed. Engl. 1997;36:285–288. doi: 10.1002/anie.199702851. DOI
Wu Z., Perez M., Scalone M., Ayad T., Ratovelomanana-Vidal V. Ruthenium-catalyzed asymmetric transfer hydrogenation of 1-aryl-substituted dihydroisoquinolines: Access to valuable chiral 1-aryl-tetrahydroisoquinoline scaffolds. Angew. Chem. Int. Ed. Engl. 2013;52:4925–4928. doi: 10.1002/anie.201301134. PubMed DOI
Ohkuma T., Utsumi N., Watanabe M., Tsutsumi K., Arai N., Murata K. Asymmetric hydrogenation of α-hydroxy ketones catalyzed by MsDPEN-Cp*Ir(III) complex. Org. Lett. 2007;9:2565–2567. doi: 10.1021/ol070964w. PubMed DOI
Chen F., Ding Z., Qin J., Wang T., He Y., Fan Q. Highly effective asymmetric hydrogenation of cyclic N-alkyl imines with chiral cationic Ru-MsDPEN catalysts. Org. Lett. 2011;13:4348–4351. doi: 10.1021/ol201679f. PubMed DOI
Li X., Blacker J., Houson I., Wu X., Xiao J. An efficient Ir(III) catalyst for the asymmetric transfer hydrogenation of ketones in neat water. Synlett. 2006;2006:1155–1160. doi: 10.1055/s-2006-932490. DOI
Yin L., Zheng Y., Jia X., Li X., Chan A.S.C. Efficient and promising asymmetric preparation of enantiopure tolvaptan via transfer hydrogenation with robust catalysts. Tetrahedron: Asymmetry. 2010;21:2390–2393. doi: 10.1016/j.tetasy.2010.08.016. DOI
Lu C., Luo Z., Huang L., Li X. The Ru-catalyzed enantioselective preparation of chiral halohydrins and their application in the synthesis of (R)-clorprenaline and (S)-sotalol. Tetrahedron: Asymmetry. 2011;22:722–727. doi: 10.1016/j.tetasy.2011.04.017. DOI
Luo Z., Qin F., Yan S., Li X. An efficient and promising method to prepare Ladostigil (TV3326) via asymmetric transfer hydrogenation catalyzed by Ru–Cs-DPEN in an HCOONa–H2O–surfactant system. Tetrahedron: Asymmetry. 2012;23:333–338. doi: 10.1016/j.tetasy.2012.02.022. DOI
Přech J., Václavík J., Šot P., Pecháček J., Vilhanová B., Januščák J., Syslová K., Pažout R., Maixner J., Zápal J., et al. Asymmetric transfer hydrogenation of 1-phenyl dihydroisoquinolines using Ru(II) diamine catalysts. Catal. Commun. 2013;36:67–70. doi: 10.1016/j.catcom.2013.03.004. DOI
Mohar B., Valleix A., Desmurs J.-R., Felemez M., Wagner A., Mioskowski C. Highly enantioselective synthesis via dynamic kinetic resolution under transfer hydrogenation using Ru(η6-arene)-N.-perfluorosulfonyl-1,2-diamine catalysts: A first insight into the relationship of the ligand’s pKa and the catalyst activity. Chem. Commun. 2001:2572–2573.
Šterk D., Stephan M.S., Mohar B. New chiral N-(N,N-dialkylamino)sulfamoyl-1,2-diamine ligands for highly enantioselective transfer hydrogenation of ketones. Tetrahedron: Asymmetry. 2002;13:2605–2608. doi: 10.1016/S0957-4166(02)00659-6. DOI
Šterk D., Stephan M., Mohar B. Highly enantioselective transfer hydrogenation of fluoroalkyl ketones. Org. Lett. 2006;8:5935–5938. doi: 10.1021/ol062358r. PubMed DOI
Strotman N.A., Baxter C.A., Brands K.M.J., Cleator E., Krska S.W., Reamer R.A., Wallace D.J., Wright T.J. Reaction development and mechanistic study of a ruthenium catalyzed intramolecular asymmetric reductive amination en route to the dual Orexin inhibitor Suvorexant (MK-4305) J. Am. Chem. Soc. 2011;133:8362–8371. doi: 10.1021/ja202358f. PubMed DOI
Šterk D., Stephan M.S., Mohar B. Transfer hydrogenation of activated ketones using novel chiral Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes. Tetrahedron Lett. 2004;45:535–537. doi: 10.1016/j.tetlet.2003.10.201. DOI
Martins J.E.D., Wills M. Ir(III) complexes of diamine ligands for asymmetric ketone hydrogenation. Tetrahedron. 2009;65:5782–5786. doi: 10.1016/j.tet.2009.05.012. DOI
Åberg J.B., Samec J.S.M., Bäckvall J.-E. Mechanistic investigation on the hydrogenation of imines by [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3). Experimental support for an ionic pathway. Chem. Commun. 2006:2771–2773. PubMed
Martins J.E.D., Clarkson G.J., Wills M. Ru(II) complexes of N-alkylated TsDPEN ligands in asymmetric transfer hydrogenation of ketones and imines. Org. Lett. 2009;11:847–850. doi: 10.1021/ol802801p. PubMed DOI
Václavík J., Kuzma M., Přech J., Kačer P. Asymmetric transfer hydrogenation of imines and ketones using chiral RuIICl(η6-p-cymene)[(S,S)-N-TsDPEN] as a catalyst: A computational study. Organometallics. 2011;30:4822–4829. doi: 10.1021/om200263d. DOI
Muñoz Robles V., Vidossich P., Lledós A., Ward T.R., Maréchal J.-D. Computational insights on an artificial imine reductase based on the biotin−streptavidin technology. ACS Catal. 2014;4:833–842. doi: 10.1021/cs400921n. DOI
Kuzma M., Václavík J., Novák P., Přech J., Januščák J., Červený J., Pecháček J., Šot P., Vilhanová B., Matoušek V., et al. New insight into the role of a base in the mechanism of imine transfer hydrogenation on a Ru(II) half-sandwich complex. Dalton Trans. 2013;42:5174–5182. doi: 10.1039/c3dt32733g. PubMed DOI
Blackmond D.G., Ropic M., Stefinovic M. Kinetic studies of the asymmetric transfer hydrogenation of imines with formic acid catalyzed by Rh-diamine catalysts. Org. Proc. Res. Dev. 2006;10:457–463. doi: 10.1021/op060033k. DOI
Dokalik A., Kalchhauser H., Mikenda W., Schweng G. NMR spectra of nitrogen-containing compounds. Correlations between experimental and GIAO calculated data. Magn. Reson. Chem. 1999;37:895–902. doi: 10.1002/(SICI)1097-458X(199912)37:12<895::AID-MRC581>3.0.CO;2-7. DOI
Rao N.S., Rao G.B., Murthy B.N., Das M.M., Prabhakar T., Lalitha M. Natural abundance nitrogen-15 nuclear magnetic resonance spectral studies on selected donors. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2002;58:2737–2757. doi: 10.1016/S1386-1425(02)00016-1. PubMed DOI
Marek R., Lyčka A. 15N-NMR spectroscopy in structural analysis. Curr. Org. Chem. 2002;6:35–66. doi: 10.2174/1385272023374643. DOI
Pecháček J., Šot P., Václavík J., Kuzma M., Kačer P. (Department of Organic Technology, Institute of Chemical Technology, Czech Republic and Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20, Prague, Czech Republic). 2014. Unpublished results.
Pecháček J., Václavík J., Přech J., Šot P., Januščák J., Vilhanová B., Vavřík J., Kuzma M., Kačer P. Asymmetric transfer hydrogenation of imines catalyzed by a Noyori-type Ru(II) complex – a parametric study. Tetrahedron: Asymmetry. 2013;24:233–239. doi: 10.1016/j.tetasy.2013.01.010. DOI
Přech J., Matoušek V., Václavík J., Pecháček J., Syslová K., Šot P., Januščák J., Vilhanová B., Kuzma M., Kačer P. Determination of enantiomeric composition of substituted tetrahydroisoquinolines based on derivatization with menthyl chloroformate. Am. J. Anal. Chem. 2013;4:125–133. doi: 10.4236/ajac.2013.43017. DOI
Yamakawa M., Yamada I., Noyori R. CH/π Attraction: The origin of enantioselectivity in transfer hydrogenation of aromatic carbonyl compounds catalyzed by chiral η6arene-ruthenium(II) complexes. Angew. Chem. Int. Ed. 2001;40:2818–2821. doi: 10.1002/1521-3773(20010803)40:15<2818::AID-ANIE2818>3.0.CO;2-Y. PubMed DOI
Arai N., Satoh H., Utsumi N., Murata K. Asymmetric hydrogenation of alkynyl ketones with the η6-arene/TsDPEN-ruthenium (II) catalyst. Org. Lett. 2013;15:3030–3033. doi: 10.1021/ol4012184. PubMed DOI
Fang Z., Wills M. Asymmetric transfer hydrogenation of functionalized acetylenic ketones. J. Org. Chem. 2013;78:8594–8605. doi: 10.1021/jo401284c. PubMed DOI
Fang Z., Wills M. Asymmetric reduction of diynones and the total synthesis of (S.)-Panaxjapyne A. Org. Lett. 2014;16:374–377. PubMed
Dub P.A., Ikariya T. Quantum chemical calculations with the inclusion of nonspecific and specific solvation: Asymmetric transfer hydrogenation with bifunctional ruthenium catalysts. J. Am. Chem. Soc. 2013;135:2604–2619. doi: 10.1021/ja3097674. PubMed DOI
Takehara J., Hashiguchi S., Fujii A., Inoue S.-I., Ikariya T., Noyori R. Amino alcohol effects on the ruthenium(II)-catalysed asymmetric transfer hydrogenation of ketones in propan-2-ol. Chem. Commun. 1996:233–234.
Bennett M.A., Smith A.K. Arene ruthenium (II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium(II) trichloride. J. Chem. Soc. Dalt. Trans. 1974:233–241. doi: 10.1039/dt9740000233. DOI
Cheung F.K., Hayes A.M., Morris D.J., Wills M. The use of a [4 + 2] cycloaddition reaction for the preparation of a series of “tethered” Ru(II)-diamine and aminoalcohol complexes. Org. Biomol. Chem. 2007;5:1093–1103. doi: 10.1039/b700744b. PubMed DOI
Touge T., Hakamata T., Hideki N., Kobayashi T., Sayo N., Saito T., Kayaki Y., Ikariya T. Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation. J. Am. Chem. Soc. 2011;133:14960–14963. PubMed
Bennett M.A., Matheson T.W., Robertson G.B., Smith A.K., Tucker P.A. Highly fluxional arene cyclooctatetraene complexes of zerovalent iron, ruthenium, and osmium. Single-crystal X-ray ctudy of (Cyclooctatetraene)(hexamethylbenzene)ruthenium(0), Ru(η6-HMB)(1–4-η-COT) Inorg. Chem. 1980;19:1014–1021.
Hull J.W., Gladfelter W.L. η4-Bonding in (arene) ruthenium complexes of octamethylnaphthalene. Organometallics. 1984;3:605–613. doi: 10.1021/om00082a018. DOI
Soni R., Jolley K.E., Clarkson G.J., Wills M. Direct formation of tethered Ru(II) catalysts using arene exchange. Org. Lett. 2013;15:5110–5113. doi: 10.1021/ol4024979. PubMed DOI PMC
Šot P., Vilhanová B., Pecháček J., Václavík J., Januščák J., Zápal J., Kuzma M., Kačer P. Role of the aromatic ligand in the asymmetric transfer hydrogenation of C=N bond on chiral Ru Noyori’s catalysts. J. Organomet. Chem. 2014 submitted.
Cheng P., Huang N., Jiang Z.-Y., Zhang Q., Zheng Y.-T., Chen J.-J., Zhang X.-M., Ma Y.-B. 1-Aryl-tetrahydroisoquinoline analogs as active anti-HIV agents in vitro. Bioorg. Med. Chem. Lett. 2008;18:2475–2478. doi: 10.1016/j.bmcl.2008.02.040. PubMed DOI
Christopher J.A., Atkinson F.L., Bax B.D., Brown M.J.B., Champigny A.C., Chuang T.T., Jones E.J., Mosley J.E., Musgrave J.R. 1-Aryl-3,4-dihydroisoquinoline inhibitors of JNK3. Bioorg. Med. Chem. Lett. 2009;19:2230–2234. doi: 10.1016/j.bmcl.2009.02.098. PubMed DOI
Gitto R., Caruso R., Orlando V., Quartarone S., Barreca M.L., Ferreri G., Russo E., de Sarro G., Chimirri A. Synthesis and anticonvulsant properties of tetrahydroisoquinoline derivatives. IlFarmaco. 2004;59:7–12. doi: 10.1016/j.farmac.2003.10.003. PubMed DOI
Abrams P., Andersson K.E. Muscarinic receptor antagonists for overactive bladder. BJU Int. 2007;100:987–1006. doi: 10.1111/j.1464-410X.2007.07205.x. PubMed DOI
Vedejs E., Trapencieris P., Suna E. Substituted isoquinolines by Noyori transfer hydrogenation: Enantioselective synthesis of chiral diamines containing an aniline subunit. J. Org. Chem. 1999;64:6724–6729. doi: 10.1021/jo990594s. PubMed DOI
Wu J., Wang F., Ma Y., Cui X., Cun L., Zhu J., Deng J., Yu B. Asymmetric transfer hydrogenation of imines and iminiums catalyzed by a water-soluble catalyst in water. Chem. Commun. 2006:1766–1768. PubMed
Chang M., Li W., Zhang X. A highly efficient and enantioselective access to tetrahydroisoquinoline alkaloids: Asymmetric hydrogenation with an iridium catalyst. Angew. Chemie. Int. Ed. 2011;50:10679–10681. doi: 10.1002/anie.201104476. PubMed DOI
Núñez-Rico J.L., Vidal-Ferran A. Ir(P−OP)]-Catalyzed aymmetric hydrogenation of diversely substituted C=N-containing heterocycles. Org. Lett. 2013;15:2066–2069. doi: 10.1021/ol400854a. PubMed DOI
Šot P., Kuzma M., Kačer P. (Department of Organic Technology, Institute of Chemical Technology, Czech Republic and Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20, Prague, Czech Republic). 2014. Unpublished results.
Rappoport D., Furche F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010;133:134105. doi: 10.1063/1.3484283. PubMed DOI
Samano V., Ray J.A., Thompson J.B., Mook R.A., Jung D.K., Koble C.S., Martin M.T., Bigham E.C., Regitz C.S., Feldman P.L., et al. Synthesis of ultra-short-acting neuromuscular blocker GW 0430: A remarkably stereo- and regioselective Tetrahydroisoquinolinium. Org. Lett. 1999;1:1993–1996. doi: 10.1021/ol9911573. PubMed DOI
Vilhanová B., Matoušek V., Václavík J., Syslová K., Přech J., Pecháček J., Šot P., Januščák J., Toman J., Zápal J., et al. Two optimized synthetic pathways toward a chiral precursor of Mivacurium chloride and other skeletal muscle relaxants. Tetrahedron: Asymmetry. 2013;24:50–55. doi: 10.1016/j.tetasy.2012.11.012. DOI
Kuzma M. (Laboratory of Molecular Structure Characterization, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-142 20, Prague, Czech Republic). 2014. Unpublished results.
Budnikova M.V, Rubinov D.B., Mikhal’chuk A.L. Annelation of 3,4-dihydroisoquinolines with 3-acylthiotetronic acids: Synthesis and properties of 8-aza-16-thiagona-12,17-diones and 3,4-dihydroisoquinolinium 3-acetylthiotetronate. Chem. Heterocycl. Compd. 2002;38:929–939. doi: 10.1023/A:1020917429301. DOI
Martin N.H., Champion S.L., Belt P.B. Regiospecific oxidation of substituted 1-benzyl-3,4-dihydroisoquinolines using singlet oxygen. Tetrahedron Lett. 1980;21:2613–2616. doi: 10.1016/S0040-4039(00)92819-3. DOI
Martin N.H., Jefford C.W. Evidence for a charge-transfer mechanism in the photo-oxygenation of an enamine. Tetrahedron Lett. 1981;22:3949–3952. doi: 10.1016/S0040-4039(01)82034-7. DOI
Martin N.H., Jefford C.W. Synthesis and photo-oxygenation of some substituted 1-benzyl-3,4-dihydroisoquinolines. Mechanism of enamine photo-oxygenation. Helv. Chim. Acta. 1982;65:762–774. doi: 10.1002/hlca.19820650314. DOI
Pitacco G., Valentin E. Oxidation and reduction of enamines. In: Rappoport Z., editor. The Chemistry of Enamines. John Wiley & Sons, Inc.; Chichester, UK: 1994. pp. 923–992.
Weisbach J.A., Kirkpatrick J.L., Macko E., Douglas B. Synthesis and parmacology of some α-oxy- and α-hydroxy-1-benzyltetrahydroisoquinolines. J. Med. Chem. 1968;11:752–760. PubMed
Lebœuf M., Ranaivo A., Cavé A., Moskowitz H. La velucryptine, nouvel alcaloïde isoquinoléique isolé de Cryptocarya velutinosta. J. Nat. Prod. 1989;52:516–521. doi: 10.1021/np50063a009. DOI
Cho S.-D., Kweon D.-H., Kang Y.-J., Lee S.-G., Lee W.S., Yoon Y.-J. Synthesis of 6,7-dimethoxy-1-halobenzyl-1,2,3,4-tetrahydroisoquinolines. J. Heterocycl. Chem. 1999;36:1151–1156. doi: 10.1002/jhet.5570360507. DOI
Shklyaev Y.V., Yeltsov M.A., Rozhkova Y.S., Tolstikov A.G., Dembitsky V.M. A new approach to synthesis of 3,3-dialkyl-3,4-dihydroisoquinoline derivatives. Heteroat. Chem. 2004;15:486–493. doi: 10.1002/hc.20049. DOI
Amaravathi M., Kumari L.K., Pardhasaradhi M. Oxidation of 1-benzyl-3,4-dihydroisoquinolines using active manganese-dioxide. Indian J. Chem. Sect. B. 1983;22B:1246–1247.
Hubert M., Herrmann R. Oxidation of imines by selenium dioxide. Z. Naturforsch. B. 1986;41B:1260–1264.
Andreu I., Cabedo N., Atassi G., Pierré A., Caignard D.H., Renard P., Cortes D., Bermejo A. An efficient method for the preparation of antitumoral α-keto-imines benzyldihydroisoquinolines by selective benzylic oxidation with C/Pd in acetonitrile. Tetrahedron Lett. 2002;43:757–759. doi: 10.1016/S0040-4039(01)02257-2. DOI
Bermejo A., Andreu I., Suvire F., Léonce S., Caignard D.H., Renard P., Pierré A., Enriz R.D., Cortes D., Cabedo N. Syntheses and antitumor targeting G1 phase of the cell cycle of benzoyldihydroisoquinolines and related 1-substituted isoquinolines. J. Med. Chem. 2002;45:5058–5068. doi: 10.1021/jm020831a. PubMed DOI
McMahon R.M., Thornber C.W., Ruchirawat S. Rearrangement of 1-(α-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinolines to 1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepines. J. Chem. Soc. Perkin Trans. 1. 1982:2163–2167.
Canonica L., Galliani G., Rindone B., Tollari S., Andreoni V., Galli E. The microbial oxygenation of the benzylisoquinoline alkaloid laudanosine. Experientia. 1983;39:1273–1275. doi: 10.1007/BF01990366. PubMed DOI
Šot P., Kuzma M., Václavík J., Pecháček J., Přech J., Januščák J., Kačer P. Asymmetric transfer hydrogenation of acetophenone N-benzylimine using [RuIICl(S,S)-N-(TsDPEN)η6-(p-cymene)]: A DFT study. Organometallics. 2012;31:6496–6499. doi: 10.1021/om300413n. DOI
Chen F., Wang T., He Y., Ding Z., Li Z., Xu L., Fan Q.-H. Asymmetric hydrogenation of N-alkyl ketimines with phosphine-free, chiral, cationic Ru-MsDPEN catalysts. Chem. Eur. J. 2011;17:1109–1113. PubMed
Chen F., Ding Z., He Y., Qin J., Wang T., Fan Q.-H. Asymmetric hydrogenation of N-alkyl and N-aryl ketimines using chiral cationic Ru(diamine) complexes as catalysts: The counteranion and solvent effects, and substrate scope. Tetrahedron. 2012;68:5248–5257. doi: 10.1016/j.tet.2012.03.019. DOI