Endogenous oligomer formation underlies DVL2 condensates and promotes Wnt/β-catenin signaling
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BE 1550/12-1
Deutsche Forschungsgemeinschaft
BE 7055/2-1
Deutsche Forschungsgemeinschaft
2018.017.2
Wilhelm Sander-Stiftung
D30
Interdisciplinary Center for Clinical Research, Erlangen
GA22-25365S
Czech Science Foundation
PubMed
39652469
PubMed Central
PMC11627551
DOI
10.7554/elife.96841
PII: 96841
Knihovny.cz E-zdroje
- Klíčová slova
- DVL2, Wnt signaling, biochemistry, biomolecular condensates, cell biology, chemical biology, dishevelled, human, paralogs,
- MeSH
- beta-katenin metabolismus genetika MeSH
- HEK293 buňky MeSH
- lidé MeSH
- multimerizace proteinu MeSH
- protein dishevelled * metabolismus genetika MeSH
- signální dráha Wnt * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-katenin MeSH
- DVL2 protein, human MeSH Prohlížeč
- protein dishevelled * MeSH
Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.
doi: 10.1101/2024.03.07.583872 PubMed
Před aktualizacídoi: 10.7554/eLife.96841.1 PubMed
Před aktualizacídoi: 10.7554/eLife.96841.2 PubMed
Zobrazit více v PubMed
Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology. 2017;18:285–298. doi: 10.1038/nrm.2017.7. PubMed DOI PMC
Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382:638–642. doi: 10.1038/382638a0. PubMed DOI
Bernkopf DB, Hadjihannas MV, Behrens J. Negative-feedback regulation of the Wnt pathway by conductin/axin2 involves insensitivity to upstream signalling. Journal of Cell Science. 2015;128:33–39. doi: 10.1242/jcs.159145. PubMed DOI
Bernkopf DB, Brückner M, Hadjihannas MV, Behrens J. An aggregon in conductin/axin2 regulates Wnt/β-catenin signaling and holds potential for cancer therapy. Nature Communications. 2019;10:4251. doi: 10.1038/s41467-019-12203-8. PubMed DOI PMC
Bienz M. Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends in Biochemical Sciences. 2014;39:487–495. doi: 10.1016/j.tibs.2014.08.006. PubMed DOI
Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316:1619–1622. doi: 10.1126/science.1137065. PubMed DOI
Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M, Tartaglia GG, Lehner B. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Reports. 2016;16:222–231. doi: 10.1016/j.celrep.2016.05.076. PubMed DOI PMC
Choi JM, Holehouse AS, Pappu RV. Physical principles underlying the complex biology of intracellular phase transitions. Annual Review of Biophysics. 2020;49:107–133. doi: 10.1146/annurev-biophys-121219-081629. PubMed DOI PMC
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–1205. doi: 10.1016/j.cell.2012.05.012. PubMed DOI
Clevers H, Loh KM, Nusse R. Stem cell signaling: an integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346:1248012. doi: 10.1126/science.1248012. PubMed DOI
Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology. 2004;22:1302–1306. doi: 10.1038/nbt1012. PubMed DOI
Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M. Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. PNAS. 2011;108:1937–1942. doi: 10.1073/pnas.1017063108. PubMed DOI PMC
Gammons MV, Renko M, Johnson CM, Rutherford TJ, Bienz M. Wnt signalosome assembly by DEP domain swapping of dishevelled. Molecular Cell. 2016;64:92–104. doi: 10.1016/j.molcel.2016.08.026. PubMed DOI PMC
Gentzel M, Schille C, Rauschenberger V, Schambony A. Distinct functionality of Dishevelled isoforms on Ca2+/calmodulin-dependent protein kinase 2 (CamKII) in Xenopus gastrulation. Molecular Biology of the Cell. 2015;26:966–977. doi: 10.1091/mbc.E14-06-1089. PubMed DOI PMC
Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, Mao X, Ma Q, Zamponi R, Bouwmeester T, Finan PM, Kirschner MW, Porter JA, Serluca FC, Cong F. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature. 2012;485:195–200. doi: 10.1038/nature11019. PubMed DOI
Harnoš J, Cañizal MCA, Jurásek M, Kumar J, Holler C, Schambony A, Hanáková K, Bernatík O, Zdráhal Z, Gömöryová K, Gybeľ T, Radaszkiewicz TW, Kravec M, Trantírek L, Ryneš J, Dave Z, Fernández-Llamazares AI, Vácha R, Tripsianes K, Hoffmann C, Bryja V. Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1. Nature Communications. 2019;10:1804. doi: 10.1038/s41467-019-09651-7. PubMed DOI PMC
Itoh K, Brott BK, Bae GU, Ratcliffe MJ, Sokol SY. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. Journal of Biology. 2005;4:3. doi: 10.1186/jbiol20. PubMed DOI PMC
Kan W, Enos MD, Korkmazhan E, Muennich S, Chen DH, Gammons MV, Vasishtha M, Bienz M, Dunn AR, Skiniotis G, Weis WI. Limited dishevelled/Axin oligomerization determines efficiency of Wnt/β-catenin signal transduction. eLife. 2020;9:e55015. doi: 10.7554/eLife.55015. PubMed DOI PMC
Kang K, Shi Q, Wang X, Chen YG. Dishevelled phase separation promotes Wnt signalosome assembly and destruction complex disassembly. The Journal of Cell Biology. 2022;221:e202205069. doi: 10.1083/jcb.202205069. PubMed DOI PMC
Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Molecular and Cellular Biology. 1999;19:4414–4422. doi: 10.1128/MCB.19.6.4414. PubMed DOI PMC
Lee YN, Gao Y, Wang HY. Differential mediation of the Wnt canonical pathway by mammalian Dishevelleds-1, -2, and -3. Cellular Signalling. 2008;20:443–452. doi: 10.1016/j.cellsig.2007.11.005. PubMed DOI PMC
Lee HJ, Shi DL, Zheng JJ. Conformational change of dishevelled plays a key regulatory role in the Wnt signaling pathways. eLife. 2015;4:e08142. doi: 10.7554/eLife.08142. PubMed DOI PMC
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harbor Perspectives in Biology. 2012;4:a007880. doi: 10.1101/cshperspect.a007880. PubMed DOI PMC
Martin EW, Mittag T. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry. 2018;57:2478–2487. doi: 10.1021/acs.biochem.8b00008. PubMed DOI PMC
Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ, Bremer A, Grace CR, Soranno A, Pappu RV, Mittag T. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science. 2020;367:694–699. doi: 10.1126/science.aaw8653. PubMed DOI PMC
Miete C, Solis GP, Koval A, Brückner M, Katanaev VL, Behrens J, Bernkopf DB. Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth. Nature Communications. 2022;13:674. doi: 10.1038/s41467-022-28286-9. PubMed DOI PMC
Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Molecular Cell. 2015;57:936–947. doi: 10.1016/j.molcel.2015.01.013. PubMed DOI PMC
Olivo-Marin JC. Extraction of spots in biological images using multiscale products. Pattern Recognition. 2002;35:1989–1996. doi: 10.1016/S0031-3203(01)00127-3. DOI
Paclíková P, Bernatík O, Radaszkiewicz TW, Bryja V. The N-terminal part of the dishevelled DEP domain is required for Wnt/β-catenin signaling in mammalian cells. Molecular and Cellular Biology. 2017;37:e00145-17. doi: 10.1128/MCB.00145-17. PubMed DOI PMC
Paclíková P, Radaszkiewicz TW, Potěšil D, Harnoš J, Zdráhal Z, Bryja V. Roles of individual human dishevelled paralogs in the Wnt signalling pathways. Cellular Signalling. 2021;85:110058. doi: 10.1016/j.cellsig.2021.110058. PubMed DOI
Ribbeck K, Görlich D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. The EMBO Journal. 2002;21:2664–2671. doi: 10.1093/emboj/21.11.2664. PubMed DOI PMC
Schubert A, Voloshanenko O, Ragaller F, Gmach P, Kranz D, Scheeder C, Miersch T, Schulz M, Trümper L, Binder C, Lampe M, Engel U, Boutros M. Superresolution microscopy localizes endogenous Dvl2 to Wnt signaling-responsive biomolecular condensates. PNAS. 2022;119:e2122476119. doi: 10.1073/pnas.2122476119. PubMed DOI PMC
Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. Journal of Cell Science. 2005;118:5269–5277. doi: 10.1242/jcs.02646. PubMed DOI
Schwarz-Romond T, Fiedler M, Shibata N, Butler PJG, Kikuchi A, Higuchi Y, Bienz M. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nature Structural & Molecular Biology. 2007a;14:484–492. doi: 10.1038/nsmb1247. PubMed DOI
Schwarz-Romond T, Metcalfe C, Bienz M. Dynamic recruitment of axin by Dishevelled protein assemblies. Journal of Cell Science. 2007b;120:2402–2412. doi: 10.1242/jcs.002956. PubMed DOI
Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382. doi: 10.1126/science.aaf4382. PubMed DOI
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Soh UJK, Trejo J. Activated protein C promotes protease-activated receptor-1 cytoprotective signaling through β-arrestin and dishevelled-2 scaffolds. PNAS. 2011;108:E1372–E80. doi: 10.1073/pnas.1112482108. PubMed DOI PMC
Stamos JL, Weis WI. The β-catenin destruction complex. Cold Spring Harbor Perspectives in Biology. 2013;5:a007898. doi: 10.1101/cshperspect.a007898. PubMed DOI PMC
Stone AB. A simplified method for preparing sucrose gradients. The Biochemical Journal. 1974;137:117–118. doi: 10.1042/bj1370117. PubMed DOI PMC
Taelman VF, Dobrowolski R, Plouhinec J-L, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell. 2010;143:1136–1148. doi: 10.1016/j.cell.2010.11.034. PubMed DOI PMC
Vamadevan V, Chaudhary N, Maddika S. Ubiquitin-assisted phase separation of dishevelled-2 promotes Wnt signalling. Journal of Cell Science. 2022;135:jcs260284. doi: 10.1242/jcs.260284. PubMed DOI
Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, III, Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423:448–452. doi: 10.1038/nature01611. PubMed DOI
Wootton JC, Federhen S. Statistics of local complexity in amino acid sequences and sequence databases. Computers & Chemistry. 1993;17:149–163. doi: 10.1016/0097-8485(93)85006-X. DOI