paralogs Dotaz Zobrazit nápovědu
Glutamate carboxypeptidase II (GCPII) and its splice variants, paralogs and human homologs represent a family of proteins with diverse tissue distribution, cellular localization and largely unknown function which have been explored only recently. While GCPII itself has been thoroughly studied from different perspectives, as clearly documented in this series of reviews, very little is known about other members of its family, even though they might be biologically relevant. Differential expression of individual GCPII splice variants is associated with tumor progression and prognosis of prostate cancer. The best studied GCPII homolog, GCPIII or NAALADase II, may be a valid pharmaceutical target for itself since it may compensate for a lack of normal GCPII enzymatic activity. Detailed molecular characterization of this family of proteins is thus very important not only with respect to the potential therapeutic use of GCPII inhibitors, but also for better understanding of the biological role of GCPII within as well as outside the nervous system.
- MeSH
- glutamátkarboxypeptidasa II analýza antagonisté a inhibitory genetika metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- protein - isoformy analýza antagonisté a inhibitory genetika metabolismus MeSH
- regulace genové exprese MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Acipenseriformes is a basal lineage of ray-finned fishes and comprise 27 extant species of sturgeons and paddlefishes. They are characterized by several specific genomic features as broad ploidy variation, high chromosome numbers, presence of numerous microchromosomes and propensity to interspecific hybridization. The presumed palaeotetraploidy of the American paddlefish was recently validated by molecular phylogeny and Hox genes analyses. A whole genome duplication in the paddlefish lineage was estimated at approximately 42 Mya and was found to be independent from several genome duplications evidenced in its sister lineage, i.e. sturgeons. We tested the ploidy status of available chromosomal markers after the expected rediploidization. Further we tested, whether paralogs of Hox gene clusters originated from this paddlefish specific genome duplication are cytogenetically distinguishable. RESULTS: We found that both paralogs HoxA alpha and beta were distinguishable without any overlapping of the hybridization signal - each on one pair of large metacentric chromosomes. Of the HoxD, only the beta paralog was unequivocally identified, whereas the alpha paralog did not work and yielded only an inconclusive diffuse signal. Chromosomal markers on three diverse ploidy levels reflecting different stages of rediploidization were identified: quadruplets retaining their ancestral tetraploid condition, semi-quadruplets still reflecting the ancestral tetraploidy with clear signs of advanced rediploidization, doublets were diploidized with ancestral tetraploidy already blurred. Also some of the available microsatellite data exhibited diploid allelic band patterns at their loci whereas another locus showed more than two alleles. CONCLUSIONS: Our exhaustive staining of paddlefish chromosomes combined with cytogenetic mapping of ribosomal genes and Hox paralogs and with microsatellite data, brings a closer look at results of the process of rediploidization in the course of paddlefish genome evolution. We show a partial rediploidization represented by a complex mosaic structure comparable with segmental paleotetraploidy revealed in sturgeons (Acipenseridae). Sturgeons and paddlefishes with their high propensity for whole genome duplication thus offer suitable animal model systems to further explore evolutionary processes that were shaping the early evolution of all vertebrates.
- MeSH
- diploidie * MeSH
- duplikace genu * MeSH
- genomika * MeSH
- genotypizační techniky MeSH
- hybridizace in situ fluorescenční * MeSH
- mikrosatelitní repetice genetika MeSH
- ribozomy genetika MeSH
- rybí proteiny genetika MeSH
- ryby genetika MeSH
- sekvenční homologie nukleových kyselin * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Dishevelled (DVL) proteins are key mediators of most Wnt pathways. In all vertebrates, three DVL paralogs are present (DVL1, DVL2 and DVL3) but it is poorly defined to what extent they are functionally redundant. Here, we generated T-REx HEK 293 cells with only one DVL paralog (i.e., DVL1-only, DVL2-only, and DVL3-only) and compared their response to Wnt-3a and Wnt-5a ligands with wild type and DVL triple knockout cells. We show that DVL is essential, in addition to the previously shown Wnt-3a-induced phosphorylation of LRP6 and transcriptional activation of TCF/LEF-dependent reporter, also for Wnt-3a-induced degradation of AXIN1 and Wnt-5a-induced phosphorylation of ROR1. We have quantified the molar ratios of DVL1:DVL2:DVL3 in our model to be approximately 4:80:16. Interestingly, DVL-only cells do not compensate for the lack of other paralogs and are still fully functional in all analyzed readouts with the exception of Wnt-3a-induced transcription assessed by TopFlash assay. In this assay, the DVL1-only cell line was the most potent; on the contrary, the DVL3-only cell line exhibited only the negligible capacity to mediate Wnt signals. Using a novel model system - complementation assays in T-REx HEK 293 with amplified Wnt signal response (RNF43/ZNRF3/DVL1/DVL2/DVL3 penta KO cells) we demonstrate that it is not the total amount of DVL but ratio of individual paralogs what decides the signal strength. In sum, this study contributes to our better understanding of the role of individual human DVL paralogs in the Wnt pathway.
Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, "open," and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.
- MeSH
- Caenorhabditis elegans metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- HEK293 buňky MeSH
- homologní rekombinace * MeSH
- jednovláknová DNA metabolismus MeSH
- komplex proteinů jaderného póru metabolismus MeSH
- lidé MeSH
- mutace MeSH
- proteiny Caenorhabditis elegans genetika metabolismus MeSH
- rekombinasa Rad51 metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- transportní proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that 'nucleotide proofreading' activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR.
- MeSH
- adenosindifosfát farmakologie MeSH
- adenosintrifosfát farmakologie MeSH
- Caenorhabditis elegans metabolismus MeSH
- druhová specificita MeSH
- fluorescence MeSH
- interferometrie MeSH
- jednovláknová DNA metabolismus MeSH
- nukleotidy metabolismus MeSH
- proteiny Caenorhabditis elegans metabolismus MeSH
- rekombinasa Rad51 chemie metabolismus MeSH
- sekvenční homologie aminokyselin * MeSH
- stabilita proteinů účinky léků MeSH
- vazba proteinů účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ribosomal protein genes (RPGs) in Saccharomyces cerevisiae are a remarkable regulatory group that may serve as a model for understanding genetic redundancy in evolutionary adaptations. Most RPGs exist as pairs of highly conserved functional paralogs with divergent untranslated regions and introns. We examined the roles of introns in strains with various combinations of intron and gene deletions in RPL22, RPL2, RPL16, RPL37, RPL17, RPS0, and RPS18 paralog pairs. We found that introns inhibited the expression of their genes in the RPL22 pair, with the RPL22B intron conferring a much stronger effect. While the WT RPL22A/RPL22B mRNA ratio was 93/7, the rpl22aΔi/RPL22B and RPL22A/rpl22bΔi ratios were >99/<1 and 60/40, respectively. The intron in RPL2A stimulated the expression of its own gene, but the removal of the other introns had little effect on expression of the corresponding gene pair. Rpl22 protein abundances corresponded to changes in mRNAs. Using splicing reporters containing endogenous intron sequences, we demonstrated that these effects were due to the inhibition of splicing by Rpl22 proteins but not by their RNA-binding mutant versions. Indeed, only WT Rpl22A/Rpl22B proteins (but not the mutants) interacted in a yeast three-hybrid system with an RPL22B intronic region between bp 165 and 236. Transcriptome analysis showed that both the total level of Rpl22 and the A/B ratio were important for maintaining the WT phenotype. The data presented here support the contention that the Rpl22B protein has a paralog-specific role. The RPL22 singleton of Kluyveromyces lactis, which did not undergo whole genome duplication, also responded to Rpl22-mediated inhibition in K. lactis cells. Vice versa, the overproduction of the K. lactis protein reduced the expression of RPL22A/B in S. cerevisiae. The extraribosomal function of of the K. lactis Rpl22 suggests that the loop regulating RPL22 paralogs of S. cerevisiae evolved from autoregulation.
Dynamins and dynamin-like proteins (DLPs) belong to a family of large GTPases involved in membrane remodelling events. These include both fusion and fission processes with different dynamin proteins often having a specialised function within the same organism. Trypanosoma brucei is thought to have only one multifunctional DLP (TbDLP). While this was initially reported to function in mitochondrial division only, an additional role in endocytosis and cytokinesis was later also proposed. Since there are two copies of TbDLP present in the trypanosome genome, we investigated potential functional differences between these two paralogs by re-expressing either protein in a TbDLP RNAi background. These paralogs, called TbDLP1 and TbDLP2, are almost identical bar a few amino acid substitutions. Our results, based on cell lines carrying tagged and RNAi-resistant versions of each protein, show that overexpression of TbDLP1 alone is able to rescue the observed endocytosis and growth defects in the mammalian bloodstream form (BSF) of the parasite. While TbDLP2 shows no rescue in our experiments in BSF, this might also be due to lower expression levels of the protein in this life stage. In contrast, both TbDLP proteins apparently play more complementary roles in the insect procyclic form (PCF) since neither TbDLP1 nor TbDLP2 alone can fully restore wildtype growth and morphology in TbDLP-depleted parasites.
- MeSH
- buněčné linie MeSH
- dynaminy chemie genetika metabolismus MeSH
- protozoální proteiny chemie genetika metabolismus MeSH
- RNA interference MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Central to homologous recombination in eukaryotes is the RAD51 recombinase, which forms helical nucleoprotein filaments on single-stranded DNA (ssDNA) and catalyzes strand invasion with homologous duplex DNA. Various regulatory proteins assist this reaction including the RAD51 paralogs. We recently discovered that a RAD51 paralog complex from C. elegans, RFS-1/RIP-1, functions predominantly downstream of filament assembly by binding and remodeling RAD-51-ssDNA filaments to a conformation more proficient for strand exchange. Here, we demonstrate that RFS-1/RIP-1 acts by shutting down RAD-51 dissociation from ssDNA. Using stopped-flow experiments, we show that RFS-1/RIP-1 confers this dramatic stabilization by capping the 5' end of RAD-51-ssDNA filaments. Filament end capping propagates a stabilizing effect with a 5'→3' polarity approximately 40 nucleotides along individual filaments. Finally, we discover that filament capping and stabilization are dependent on nucleotide binding, but not hydrolysis by RFS-1/RIP-1. These data define the mechanism of RAD51 filament remodeling by RAD51 paralogs.
- MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- intermediární filamenta genetika metabolismus MeSH
- jednovláknová DNA genetika MeSH
- multiproteinové komplexy metabolismus MeSH
- proteiny Caenorhabditis elegans genetika metabolismus MeSH
- rekombinační oprava DNA MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- transportní proteiny genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships.
- MeSH
- aktiny genetika MeSH
- Cryptosporidium genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genotyp MeSH
- kryptosporidióza epidemiologie MeSH
- molekulární sekvence - údaje MeSH
- prevalence MeSH
- proteiny tepelného šoku HSP70 genetika MeSH
- RNA ribozomální 18S genetika MeSH
- Sciuridae parazitologie MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Ips typographus (L.), the eight-spined spruce bark beetle, causes severe damage throughout Eurasian spruce forests and suitable nuclear markers are needed in order to study its population structure on a genetic level. Two closely related genes encoding α-amylase in I. typographus were characterized and named AmyA and AmyB. Both α-amylase paralogs consisted of six exons and five introns. AmyA encodes a polypeptide of 483 amino acids, whereas AmyB has two alternative transcripts encoding polypeptides of 483 and 370 amino acids. The expression levels of both genes were high during larval stage and adulthood. The AmyB transcripts were absent in the pupal stage. A modification of the allozyme staining method allowed us to detect two clusters of bands on the electrophoretic gel that may correspond to the two α-amylase genes. There was a correlation between the lack of AmyB expression in pupa and the absence of the fast migrating isozyme cluster at this stage, suggesting that the faster migrating isoforms are products of the AmyB gene, whereas the slowly migrating bands are derived from the AmyA.
- MeSH
- alfa-amylasy genetika metabolismus MeSH
- brouci enzymologie genetika MeSH
- ektroforéza na škrobovém gelu MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fylogeneze MeSH
- hmyzí proteiny genetika metabolismus MeSH
- izoenzymy genetika metabolismus MeSH
- klonování DNA MeSH
- messenger RNA metabolismus MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie aminokyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH