Analysis of binding interfaces of the human scaffold protein AXIN1 by peptide microarrays
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30166345
PubMed Central
PMC6200943
DOI
10.1074/jbc.ra118.005127
PII: S0021-9258(20)35101-2
Knihovny.cz E-zdroje
- Klíčová slova
- Myc (c-Myc), Wnt pathway, axin, casein kinase 1ϵ, dishevelled, intrinsically disordered region, p53, peptide array, scaffold protein, serine/threonine protein kinase,
- MeSH
- axin protein metabolismus MeSH
- beta-katenin metabolismus MeSH
- čipová analýza proteinů metody MeSH
- fosforylace MeSH
- interakční proteinové domény a motivy * MeSH
- kaseinkinasa Iepsilon metabolismus MeSH
- kompetitivní vazba MeSH
- lidé MeSH
- peptidy metabolismus MeSH
- protein dishevelled metabolismus MeSH
- proteiny Wnt metabolismus MeSH
- signální dráha Wnt MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- axin protein MeSH
- AXIN1 protein, human MeSH Prohlížeč
- beta-katenin MeSH
- kaseinkinasa Iepsilon MeSH
- peptidy MeSH
- protein dishevelled MeSH
- proteiny Wnt MeSH
Intrinsically disordered regions (IDRs) are protein regions that lack persistent secondary or tertiary structure under native conditions. IDRs represent >40% of the eukaryotic proteome and play a crucial role in protein-protein interactions. The classical approach for identification of these interaction interfaces is based on mutagenesis combined with biochemical techniques such as coimmunoprecipitation or yeast two-hybrid screening. This approach either provides information of low resolution (large deletions) or very laboriously tries to precisely define the binding epitope via single amino acid substitutions. Here, we report the use of a peptide microarray based on the human scaffold protein AXIN1 for high-throughput and -resolution mapping of binding sites for several AXIN1 interaction partners in vitro For each of the AXIN1-binding partners tested, i.e. casein kinase 1 ϵ (CK1ϵ); c-Myc; peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1); and p53, we found at least three different epitopes, predominantly in the central IDR of AXIN1. We functionally validated the specific AXIN1-CK1ϵ interaction identified here with epitope-mimicking peptides and with AXIN1 variants having deletions of short binding epitopes. On the basis of these results, we propose a model in which AXIN1 competes with dishevelled (DVL) for CK1ϵ and regulates CK1ϵ-induced phosphorylation of DVL and activation of Wnt/β-catenin signaling.
Zobrazit více v PubMed
Good M. C., Zalatan J. G., and Lim W. A. (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 10.1126/science.1198701 PubMed DOI PMC
Dunker A. K., Babu M. M., Barbar E., Blackledge M., Bondos S. E., Dosztányi Z., Dyson H. J., Forman-Kay J., Fuxreiter M., Gsponer J., Han K. H., Jones D. T., Longhi S., Metallo S. J., Nishikawa K., et al. (2013) What's in a name? Why these proteins are intrinsically disordered: why these proteins are intrinsically disordered. Intrinsically Disord. Proteins 1, e24157 10.4161/idp.24157 PubMed DOI PMC
Cortese M. S., Uversky V. N., and Dunker A. K. (2008) Intrinsic disorder in scaffold proteins: getting more from less. Prog. Biophys. Mol. Biol. 98, 85–106 10.1016/j.pbiomolbio.2008.05.007 PubMed DOI PMC
Wright P. E., and Dyson H. J. (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 10.1038/nrm3920 PubMed DOI PMC
Noutsou M., Duarte A. M., Anvarian Z., Didenko T., Minde D. P., Kuper I., de Ridder I., Oikonomou C., Friedler A., Boelens R., Rüdiger S. G. D., and Maurice M. M. (2011) Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded. J. Mol. Biol. 405, 773–786 10.1016/j.jmb.2010.11.013 PubMed DOI
Luo W., and Lin S. C. (2004) Axin: a master scaffold for multiple signaling pathways. Neurosignals 13, 99–113 10.1159/000076563 PubMed DOI
Cho R. J., Huang M., Campbell M. J., Dong H., Steinmetz L., Sapinoso L., Hampton G., Elledge S. J., Davis R. W., and Lockhart D. J. (2001) Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27, 48–54 10.1038/83751 PubMed DOI
Brem R. B., Yvert G., Clinton R., and Kruglyak L. (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 10.1126/science.1069516 PubMed DOI
Landgraf C., Panni S., Montecchi-Palazzi L., Castagnoli L., Schneider-Mergener J., Volkmer-Engert R., and Cesareni G. (2004) Protein interaction networks by proteome peptide scanning. PLoS Biol. 2, E14 10.1371/journal.pbio.0020014 PubMed DOI PMC
Otte L., Wiedemann U., Schlegel B., Pires J. R., Beyermann M., Schmieder P., Krause G., Volkmer-Engert R., Schneider-Mergener J., and Oschkinat H. (2003) WW domain sequence activity relationships identified using ligand recognition propensities of 42 WW domains. Protein Sci. 12, 491–500 10.1110/ps.0233203 PubMed DOI PMC
Espejo A., Côté J., Bednarek A., Richard S., and Bedford M. T. (2002) A protein-domain microarray identifies novel protein-protein interactions. Biochem. J. 367, 697–702 10.1042/bj20020860 PubMed DOI PMC
Zhang Y., Qiu W. J., Chan S. C., Han J., He X., and Lin S. C. (2002) Casein kinase I and casein kinase II differentially regulate Axin function in Wnt and JNK pathways. J. Biol. Chem. 277, 17706–17712 10.1074/jbc.M111982200 PubMed DOI
Rubinfeld B., Tice D. A., and Polakis P. (2001) Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1 ϵ. J. Biol. Chem. 276, 39037–39045 10.1074/jbc.M105148200 PubMed DOI
Reinhardt J., Ferandin Y., and Meijer L. (2007) Purification of CK1 by affinity chromatography on immobilised axin. Protein Expr. Purif. 54, 101–109 10.1016/j.pep.2007.02.020 PubMed DOI
Arnold H. K., Zhang X., Daniel C. J., Tibbitts D., Escamilla-Powers J., Farrell A., Tokarz S., Morgan C., and Sears R. C. (2009) The Axin1 scaffold protein promotes formation of a degradation complex for c-Myc. EMBO J. 28, 500–512 10.1038/emboj.2008.279 PubMed DOI PMC
Rui Y., Xu Z., Lin S., Li Q., Rui H., Luo W., Zhou H. M., Cheung P. Y., Wu Z., Ye Z., Li P., Han J., and Lin S. C. (2004) Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation. EMBO J. 23, 4583–4594 10.1038/sj.emboj.7600475 PubMed DOI PMC
McKay R. M., Peters J. M., and Graff J. M. (2001) The casein kinase I family in Wnt signaling. Dev. Biol. 235, 388–396 10.1006/dbio.2001.0308 PubMed DOI
Kishida M., Hino S. i., Michiue T., Yamamoto H., Kishida S., Fukui A., Asashima M., and Kikuchi A. (2001) Synergistic activation of the Wnt signaling pathway by Dvl and casein kinase Iϵ. J. Biol. Chem. 276, 33147–33155 10.1074/jbc.M103555200 PubMed DOI
Bernatik O., Ganji R. S., Dijksterhuis J. P., Konik P., Cervenka I., Polonio T., Krejci P., Schulte G., and Bryja V. (2011) Sequential activation and inactivation of Dishevelled in the Wnt/β-catenin pathway by casein kinases. J. Biol. Chem. 286, 10396–10410 10.1074/jbc.M110.169870 PubMed DOI PMC
Spink K. E., Polakis P., and Weis W. I. (2000) Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J. 19, 2270–2279 10.1093/emboj/19.10.2270 PubMed DOI PMC
Bernatík O., Šedová K., Schille C., Ganji R. S., Červenka I., Trantírek L., Schambony A., Zdráhal Z., and Bryja V. (2014) Functional analysis of dishevelled-3 phosphorylation identifies distinct mechanisms driven by casein kinase 1 and frizzled5. J. Biol. Chem. 289, 23520–23533 10.1074/jbc.M114.590638 PubMed DOI PMC
Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., and Clevers H. (1997) Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 10.1126/science.275.5307.1784 PubMed DOI
Cong F., Schweizer L., and Varmus H. (2004) Casein kinase Iϵ modulates the signaling specificities of dishevelled. Mol. Cell. Biol. 24, 2000–2011 10.1128/MCB.24.5.2000-2011.2004 PubMed DOI PMC
Xing Y., Clements W. K., Kimelman D., and Xu W. (2003) Crystal structure of a β-catenin/axin complex suggests a mechanism for the β-catenin destruction complex. Gene Dev. 17, 2753–2764 10.1101/gad.1142603 PubMed DOI PMC
Dajani R., Fraser E., Roe S. M., Young N., Good V., Dale T. C., and Pearl L. H. (2001) Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105, 721–732 10.1016/S0092-8674(01)00374-9 PubMed DOI
Dajani R., Fraser E., Roe S. M., Yeo M., Good V. M., Thompson V., Dale T. C., and Pearl L. H. (2003) Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J. 22, 494–501 10.1093/emboj/cdg068 PubMed DOI PMC
Kim S. E., Huang H., Zhao M., Zhang X., Zhang A., Semonov M. V., MacDonald B. T., Zhang X., Garcia Abreu J., Peng L., and He X. (2013) Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340, 867–870 10.1126/science.1232389 PubMed DOI PMC
Fiedler M., Mendoza-Topaz C., Rutherford T. J., Mieszczanek J., and Bienz M. (2011) Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proc. Natl. Acad. Sci. U.S.A. 108, 1937–1942 10.1073/pnas.1017063108 PubMed DOI PMC
Elyada E., Pribluda A., Goldstein R. E., Morgenstern Y., Brachya G., Cojocaru G., Snir-Alkalay I., Burstain I., Haffner-Krausz R., Jung S., Wiener Z., Alitalo K., Oren M., Pikarsky E., and Ben-Neriah Y. (2011) CKIα ablation highlights a critical role for p53 in invasiveness control. Nature 470, 409–413 10.1038/nature09673 PubMed DOI
Angers S., Thorpe C. J., Biechele T. L., Goldenberg S. J., Zheng N., MacCoss M. J., and Moon R. T. (2006) The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-β-catenin pathway by targeting Dishevelled for degradation. Nat. Cell Biol. 8, 348–357 10.1038/ncb1381 PubMed DOI
de Groot R. E., Ganji R. S., Bernatik O., Lloyd-Lewis B., Seipel K., Sědová K., Zdráhal Z., Dhople V. M., Dale T. C., Korswagen H. C., and Bryja V. (2014) Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway. Sci. Signal 7, ra26 10.1126/scisignal.2004985 PubMed DOI
Bryja V., Pacherník J., Soucek K., Horvath V., Dvorák P., and Hampl A. (2004) Increased apoptosis in differentiating p27-deficient mouse embryonic stem cells. Cell. Mol. Life Sci. 61, 1384–1400 10.1007/s00018-004-4081-4 PubMed DOI PMC
Xue B., Dunbrack R. L., Williams R. W., Dunker A. K., and Uversky V. N. (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta 1804, 996–1010 10.1016/j.bbapap.2010.01.011 PubMed DOI PMC
WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer