• This record comes from PubMed

β-arrestin promotes Wnt-induced low density lipoprotein receptor-related protein 6 (Lrp6) phosphorylation via increased membrane recruitment of Amer1 protein

. 2014 Jan 10 ; 289 (2) : 1128-41. [epub] 20131121

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 24265322
PubMed Central PMC3887180
DOI 10.1074/jbc.m113.498444
PII: S0021-9258(20)41579-0
Knihovny.cz E-resources

β-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/β-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the β-arrestin function in Wnt/β-catenin signaling. We demonstrate that β-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. β-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that β-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that β-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIβ. Importantly, cells lacking β-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that β-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that β-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by β-arrestin- and Dishevelled-associated kinases.

See more in PubMed

Clevers H. (2006) Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 PubMed

Logan C. Y., Nusse R. (2004) The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 PubMed

Schulte G., Bryja V. (2007) The Frizzled family of unconventional G protein-coupled receptors. Trends Pharmacol. Sci. 28, 518–525 PubMed

Bilic J., Huang Y. L., Davidson G., Zimmermann T., Cruciat C. M., Bienz M., Niehrs C. (2007) Wnt induces LRP6 signalosomes and promotes Dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 PubMed

Zeng X., Huang H., Tamai K., Zhang X., Harada Y., Yokota C., Almeida K., Wang J., Doble B., Woodgett J., Wynshaw-Boris A., Hsieh J. C., He X. (2008) Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via Frizzled, Dishevelled, and Axin functions. Development 135, 367–375 PubMed PMC

Pan W., Choi S. C., Wang H., Qin Y., Volpicelli-Daley L., Swan L., Lucast L., Khoo C., Zhang X., Li L., Abrams C. S., Sokol S. Y., Wu D. (2008) Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 321, 1350–1353 PubMed PMC

Tanneberger K., Pfister A. S., Brauburger K., Schneikert J., Hadjihannas M. V., Kriz V., Schulte G., Bryja V., Behrens J. (2011) Amer1/WTX couples Wnt-induced formation of PtdIns(4,5)P2 to LRP6 phosphorylation. EMBO J. 30, 1433–1443 PubMed PMC

Tamai K., Zeng X., Liu C., Zhang X., Harada Y., Chang Z., He X. (2004) A mechanism for Wnt coreceptor activation. Mol. Cell 13, 149–156 PubMed

Behrens J., Jerchow B. A., Würtele M., Grimm J., Asbrand C., Wirtz R., Kühl M., Wedlich D., Birchmeier W. (1998) Functional interaction of an Axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 PubMed

Kimelman D., Xu W. (2006) β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25, 7482–7491 PubMed

MacDonald B. T., Tamai K., He X. (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 PubMed PMC

Schulte G., Schambony A., Bryja V. (2010) β-Arrestins: scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? Br. J. Pharmacol. 159, 1051–1058 PubMed PMC

Chen W., Hu L. A., Semenov M. V., Yanagawa S., Kikuchi A., Lefkowitz R. J., Miller W. E. (2001) β-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated Dishevelled proteins. Proc. Natl. Acad. Sci. U.S.A. 98, 14889–14894 PubMed PMC

Bryja V., Gradl D., Schambony A., Arenas E., Schulte G. (2007) β-Arrestin is a necessary component of Wnt/β-catenin signaling in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 104, 6690–6695 PubMed PMC

Bryja V., Schambony A., Cajánek L., Dominguez I., Arenas E., Schulte G. (2008) β-Arrestin and casein kinase 1/2 define distinct branches of noncanonical WNT signalling pathways. EMBO Rep. 9, 1244–1250 PubMed PMC

Chen W., ten Berge D., Brown J., Ahn S., Hu L. A., Miller W. E., Caron M. G., Barak L. S., Nusse R., Lefkowitz R. J. (2003) Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 1391–1394 PubMed

Kim G. H., Her J. H., Han J. K. (2008) Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J. Cell Biol. 182, 1073–1082 PubMed PMC

Kim G. H., Han J. K. (2007) Essential role for β-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J. 26, 2513–2526 PubMed PMC

Kikuchi A., Yamamoto H., Sato A. (2009) Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 19, 119–129 PubMed

Bernatik O., Ganji R. S., Dijksterhuis J. P., Konik P., Cervenka I., Polonio T., Krejci P., Schulte G., Bryja V. (2011) Sequential activation and inactivation of Dishevelled in the Wnt/β-catenin pathway by casein kinases. J. Biol. Chem. 286, 10396–10410 PubMed PMC

Kohout T. A., Lin F. S., Perry S. J., Conner D. A., Lefkowitz R. J. (2001) β-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc. Natl. Acad. Sci. U.S.A. 98, 1601–1606 PubMed PMC

Tanneberger K., Pfister A. S., Kriz V., Bryja V., Schambony A., Behrens J. (2011) Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1). J. Biol. Chem. 286, 19204–19214 PubMed PMC

Angers S., Thorpe C. J., Biechele T. L., Goldenberg S. J., Zheng N., MacCoss M. J., Moon R. T. (2006) The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-β-catenin pathway by targeting Dishevelled for degradation. Nat. Cell Biol. 8, 348–357 PubMed

Tauriello D. V., Haegebarth A., Kuper I., Edelmann M. J., Henraat M., Canninga-van Dijk M. R., Kessler B. M., Clevers H., Maurice M. M. (2010) Loss of the tumor suppressor CYLD enhances Wnt/β-catenin signaling through K63-linked ubiquitination of Dvl. Mol. Cell 37, 607–619 PubMed

Lee J. S., Ishimoto A., Yanagawa S. (1999) Characterization of mouse Dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J. Biol. Chem. 274, 21464–21470 PubMed

Veeman M. T., Slusarski D. C., Kaykas A., Louie S. H., Moon R. T. (2003) Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 13, 680–685 PubMed

Grohmann A., Tanneberger K., Alzner A., Schneikert J., Behrens J. (2007) Amer1 regulates the distribution of the tumor suppressor APC between microtubules and the plasma membrane. J. Cell Sci. 120, 3738–3747 PubMed

Bryja V., Pacherník J., Faldíková L., Krejcí P., Pogue R., Nevrivá I., Dvorák P., Hampl A. (2004) The role of p27Kip1 in maintaining the levels of D-type cyclins in vivo. Biochim. Biophys. Acta 1691, 105–116 PubMed

Major M. B., Roberts B. S., Berndt J. D., Marine S., Anastas J., Chung N., Ferrer M., Yi X., Stoick-Cooper C. L., von Haller P. D., Kategaya L., Chien A., Angers S., MacCoss M., Cleary M. A., Arthur W. T., Moon R. T. (2008) New regulators of Wnt/β-catenin signaling revealed by integrative molecular screening. Sci. Signal. 1, ra12. PubMed

Smalley M. J., Signoret N., Robertson D., Tilley A., Hann A., Ewan K., Ding Y., Paterson H., Dale T. C. (2005) Dishevelled (Dvl-2) activates canonical Wnt signalling in the absence of cytoplasmic puncta. J. Cell Sci. 118, 5279–5289 PubMed

Schwarz-Romond T., Merrifield C., Nichols B. J., Bienz M. (2005) The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J. Cell Sci. 118, 5269–5277 PubMed

Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. (1997) Constitutive transcriptional activation by a β-catenin-TCF complex in APC−/− colon carcinoma. Science 275, 1784–1787 PubMed

Qin Y., Li L., Pan W., Wu D. (2009) Regulation of phosphatidylinositol kinases and metabolism by Wnt3a and Dvl. J. Biol. Chem. 284, 22544–22548 PubMed PMC

Nelson C. D., Kovacs J. J., Nobles K. N., Whalen E. J., Lefkowitz R. J. (2008) β-Arrestin scaffolding of phosphatidylinositol 4-phosphate 5-kinase Iα promotes agonist-stimulated sequestration of the β2-adrenergic receptor. J. Biol. Chem. 283, 21093–21101 PubMed PMC

Balla A., Tuymetova G., Barshishat M., Geiszt M., Balla T. (2002) Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277, 20041–20050 PubMed

Major M. B., Camp N. D., Berndt J. D., Yi X., Goldenberg S. J., Hubbert C., Biechele T. L., Gingras A. C., Zheng N., Maccoss M. J., Angers S., Moon R. T. (2007) Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science 316, 1043–1046 PubMed

Chen M., Philipp M., Wang J., Premont R. T., Garrison T. R., Caron M. G., Lefkowitz R. J., Chen W. (2009) G protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J. Biol. Chem. 284, 35040–35048 PubMed PMC

Červenka I., Wolf J., Mašek J., Krejci P., Wilcox W. R., Kozubík A., Schulte G., Gutkind J. S., Bryja V. (2011) Mitogen-activated protein kinases promote WNT/β-catenin signaling via phosphorylation of LRP6. Mol. Cell. Biol. 31, 179–189 PubMed PMC

Krejci P., Aklian A., Kaucka M., Sevcikova E., Prochazkova J., Masek J. K., Mikolka P., Pospisilova T., Spoustova T., Weis M., Paznekas W. A., Wolf J. H., Gutkind J. S., Wilcox W. R., Kozubik A., Jabs E. W., Bryja V., Salazar L., Vesela I., Balek L. (2012) Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS ONE 7, e35826. PubMed PMC

Davidson G., Wu W., Shen J., Bilic J., Fenger U., Stannek P., Glinka A., Niehrs C. (2005) Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438, 867–872 PubMed

Davidson G., Shen J., Huang Y. L., Su Y., Karaulanov E., Bartscherer K., Hassler C., Stannek P., Boutros M., Niehrs C. (2009) Cell cycle control of Wnt receptor activation. Dev. Cell 17, 788–799 PubMed

Zeng X., Tamai K., Doble B., Li S., Huang H., Habas R., Okamura H., Woodgett J., He X. (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438, 873–877 PubMed PMC

Pfister A. S., Tanneberger K., Schambony A., Behrens J. (2012) Amer2 protein is a novel negative regulator of Wnt/β-catenin signaling involved in neuroectodermal patterning. J. Biol. Chem. 287, 1734–1741 PubMed PMC

Boutet A., Comai G., Schedl A. (2010) The WTX/Amer1 gene family: evolution, signature and function. BMC Evol. Biol. 10, 280. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...