The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
CA138488
NIH HHS - United States
CA189283
NIH HHS - United States
R21 CA179735
NCI NIH HHS - United States
U01 CA189283
NCI NIH HHS - United States
CA179735
NIH HHS - United States
R01 CA138488
NCI NIH HHS - United States
PubMed
29281678
PubMed Central
PMC5744972
DOI
10.1371/journal.pone.0189864
PII: PONE-D-17-35931
Knihovny.cz E-zdroje
- MeSH
- apoptóza účinky léků MeSH
- beta-katenin metabolismus MeSH
- diterpeny farmakologie MeSH
- epitelo-mezenchymální tranzice účinky léků MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- proteiny Wnt metabolismus MeSH
- signální transdukce účinky léků MeSH
- triple-negativní karcinom prsu metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- beta-katenin MeSH
- diterpeny MeSH
- jatrophone MeSH Prohlížeč
- proteiny Wnt MeSH
Metastatic breast cancer is the leading cause of worldwide cancer-related deaths among women. Triple negative breast cancers (TNBC) are highly metastatic and are devoid of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) amplification. TNBCs are unresponsive to Herceptin and/or anti-estrogen therapies and too often become highly chemoresistant when exposed to standard chemotherapy. TNBCs frequently metastasize to the lung and brain. We have previously shown that TNBCs are active for oncogenic Wnt10b/β-catenin signaling and that WNT10B ligand and its downstream target HMGA2 are predictive of poorer outcomes and are strongly associated with chemoresistant TNBC metastatic disease. In search of new chemicals to target the oncogenic WNT10B/β-CATENIN/HMGA2 signaling axis, the anti-proliferative activity of the diterpene Jatrophone (JA), derived from the plant Jatropha isabelli, was tested on TNBC cells. JA interfered with the WNT TOPFLASH reporter at the level between receptor complex and β-catenin activation. JA efficacy was determined in various subtypes of TNBC conventional cell lines or in TNBC cell lines derived from TNBC PDX tumors. The differential IC50 (DCI50) responsiveness was compared among the TNBC models based on etiological-subtype and their cellular chemoresistance status. Elevated WNT10B expression also coincided with increased resistance to JA exposure in several metastatic cell lines. JA interfered with cell cycle progression, and induced loss of expression of the canonical Wnt-direct targets genes AXIN2, HMGA2, MYC, PCNA and CCND1. Mechanistically, JA reduced steady-state, non-phosphorylated (activated) β-catenin protein levels, but not total β-catenin levels. JA also caused the loss of expression of key EMT markers and significantly impaired wound healing in scratch assays, suggesting a direct role for JA inhibiting migration of TNBC cells. These results indicate that Jatrophone could be a powerful new chemotherapeutic agent against highly chemoresistant triple negative breast cancers by targeting the oncogenic Wnt10b/β-catenin signaling pathway.
Zobrazit více v PubMed
Dietze EC, Sistrunk C, Miranda-Carboni G, O'Regan R, Seewaldt VL (2015) Triple-negative breast cancer in African-American women: disparities versus biology. Nat Rev Cancer 15: 248–254. doi: 10.1038/nrc3896 PubMed DOI PMC
Griffiths CL, Olin JL (2012) Triple negative breast cancer: a brief review of its characteristics and treatment options. Journal of pharmacy practice 25: 319–323. doi: 10.1177/0897190012442062 PubMed DOI
Benafif S, Hall M (2015) An update on PARP inhibitors for the treatment of cancer. Onco Targets Ther 8: 519–528. doi: 10.2147/OTT.S30793 PubMed DOI PMC
Stamos JL, Weis WI (2013) The beta-catenin destruction complex. Cold Spring Harb Perspect Biol 5: a007898 doi: 10.1101/cshperspect.a007898 PubMed DOI PMC
Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149: 1192–1205. doi: 10.1016/j.cell.2012.05.012 PubMed DOI
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. PubMed PMC
Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, et al. (2013) WNT10B/beta-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med 5: 264–279. doi: 10.1002/emmm.201201320 PubMed DOI PMC
Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70: 461–477. doi: 10.1021/np068054v PubMed DOI
Ling T, Tran M, Gonzalez MA, Gautam LN, Connelly M, Wood RK, et al. (2015) (+)-Dehydroabietylamine derivatives target triple-negative breast cancer. Eur J Med Chem 102: 9–13. PubMed
Tu Y, Jeffries C, Ruan H, Nelson C, Smithson D, Shelat AA, et al. (2010) Automated high-throughput system to fractionate plant natural products for drug discovery. J Nat Prod 73: 751–754. doi: 10.1021/np9007359 PubMed DOI PMC
Zhang Y, Wang CP, Ding XX, Wang N, Ma F, Jiang JH, et al. (2014) FNC, a novel nucleoside analogue, blocks invasion of aggressive non-Hodgkin lymphoma cell lines via inhibition of the Wnt/beta-catenin signaling pathway. Asian Pac J Cancer Prev 15: 6829–6835. PubMed
Devappa RK, Makkar HP, Becker K (2010) Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from jatropha: review. J Agric Food Chem 58: 6543–6555. doi: 10.1021/jf100003z PubMed DOI
Kriz V, Pospichalova V, Masek J, Kilander MB, Slavik J, Tanneberger K, et al. (2014) beta-arrestin promotes Wnt-induced low density lipoprotein receptor-related protein 6 (Lrp6) phosphorylation via increased membrane recruitment of Amer1 protein. J Biol Chem 289: 1128–1141. doi: 10.1074/jbc.M113.498444 PubMed DOI PMC
Najdi R, Proffitt K, Sprowl S, Kaur S, Yu J, Covey TM, et al. (2012) A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation 84: 203–213. doi: 10.1016/j.diff.2012.06.004 PubMed DOI PMC
Lillo MA, Nichols C, Perry C, Runke S, Krutilina R, Seagroves TN, et al. (2017) Methylparaben stimulates tumor initiating cells in ER+ breast cancer models. J Appl Toxicol 37: 417–425. doi: 10.1002/jat.3374 PubMed DOI PMC
Miranda-Carboni GA, Krum SA, Yee K, Nava M, Deng QE, Pervin S, et al. (2008) A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors. Genes Dev 22: 3121–3134. doi: 10.1101/gad.1692808 PubMed DOI PMC
Cui H, Meng Y, Bulleit RF (1998) Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. Brain Res Dev Brain Res 111: 177–188. PubMed
McGrew LL, Otte AP, Moon RT (1992) Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate. Development 115: 463–473. PubMed
Amos KD, Adamo B, Anders CK (2012) Triple-negative breast cancer: an update on neoadjuvant clinical trials. Int J Breast Cancer 2012: 385978 doi: 10.1155/2012/385978 PubMed DOI PMC
DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17: 1514–1520. doi: 10.1038/nm.2454 PubMed DOI PMC
Modder UI, Oursler MJ, Khosla S, Monroe DG (2011) Wnt10b activates the Wnt, notch, and NFkappaB pathways in U2OS osteosarcoma cells. J Cell Biochem 112: 1392–1402. doi: 10.1002/jcb.23048 PubMed DOI PMC
Ma H, Nguyen C, Lee KS, Kahn M (2005) Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene 24: 3619–3631. doi: 10.1038/sj.onc.1208433 PubMed DOI
Maher MT, Mo R, Flozak AS, Peled ON, Gottardi CJ (2010) Beta-catenin phosphorylated at serine 45 is spatially uncoupled from beta-catenin phosphorylated in the GSK3 domain: implications for signaling. PLoS One 5: e10184 doi: 10.1371/journal.pone.0010184 PubMed DOI PMC
Nusse R (2005) Wnt signaling in disease and in development. Cell Res 15: 28–32. doi: 10.1038/sj.cr.7290260 PubMed DOI
Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 17: 1371–1384. doi: 10.1093/emboj/17.5.1371 PubMed DOI PMC
Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108: 837–847. PubMed
Noutsou M, Duarte AM, Anvarian Z, Didenko T, Minde DP, Kuper I, et al. (2011) Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded. J Mol Biol 405: 773–786. doi: 10.1016/j.jmb.2010.11.013 PubMed DOI
Sakanaka C, Weiss JB, Williams LT (1998) Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci U S A 95: 3020–3023. PubMed PMC
Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, et al. (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280: 596–599. PubMed
Carey LA (2011) Directed therapy of subtypes of triple-negative breast cancer. Oncologist 16 Suppl 1: 71–78. PubMed
Dawood S, Broglio K, Kau SW, Green MC, Giordano SH, Meric-Bernstam F, et al. (2009) Triple receptor-negative breast cancer: the effect of race on response to primary systemic treatment and survival outcomes. J Clin Oncol 27: 220–226. doi: 10.1200/JCO.2008.17.9952 PubMed DOI PMC
Pal SK, Childs BH, Pegram M (2011) Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 125: 627–636. doi: 10.1007/s10549-010-1293-1 PubMed DOI PMC
Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75: 311–335. doi: 10.1021/np200906s PubMed DOI PMC
Hadi V, Hotard M, Ling T, Salinas YG, Palacios G, Connelly M, et al. (2013) Evaluation of Jatropha isabelli natural products and their synthetic analogs as potential antimalarial therapeutic agents. Eur J Med Chem 65: 376–380. doi: 10.1016/j.ejmech.2013.04.030 PubMed DOI
Ling T, H V, Guiguemde A., Landfear S.M., Rivas F. (2015) Jatropha Natural Products as Potential Therapeutic Leads eBooks packages: Springer, Cham.
Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama 295: 2492–2502. doi: 10.1001/jama.295.21.2492 PubMed DOI
Vidal G, Bursac Z, Miranda-Carboni G, White-Means S, Starlard-Davenport A (2017) Racial disparities in survival outcomes by breast tumor subtype among African American women in Memphis, Tennessee. Cancer Med 6: 1776–1786. doi: 10.1002/cam4.1117 PubMed DOI PMC