Mitogen-activated protein kinases promote WNT/beta-catenin signaling via phosphorylation of LRP6
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
P01 HD022657
NICHD NIH HHS - United States
Howard Hughes Medical Institute - United States
Intramural NIH HHS - United States
5P01HD022657-21A
NICHD NIH HHS - United States
PubMed
20974802
PubMed Central
PMC3019858
DOI
10.1128/mcb.00550-10
PII: MCB.00550-10
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- beta-katenin metabolismus MeSH
- buněčné linie MeSH
- fosforylace MeSH
- krysa rodu Rattus MeSH
- LDL receptor related protein 6 MeSH
- lidé MeSH
- malá interferující RNA genetika MeSH
- MAP kinasový signální systém MeSH
- mitogenem aktivovaná proteinkinasa 8 metabolismus MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- mitogenem aktivované proteinkinasy antagonisté a inhibitory genetika metabolismus MeSH
- nádorové buňky kultivované MeSH
- proteiny související s LDL-receptory chemie genetika metabolismus MeSH
- proteiny Wnt metabolismus MeSH
- receptory LDL metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- beta-katenin MeSH
- CTNNB1 protein, human MeSH Prohlížeč
- LDL receptor related protein 6 MeSH
- LRP6 protein, human MeSH Prohlížeč
- malá interferující RNA MeSH
- mitogenem aktivovaná proteinkinasa 8 MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
- mitogenem aktivované proteinkinasy MeSH
- proteiny související s LDL-receptory MeSH
- proteiny Wnt MeSH
- receptory LDL MeSH
LDL-related protein 6 (LRP6) is a coreceptor of WNTs and a key regulator of the WNT/β-catenin pathway. Upon activation, LRP6 is phosphorylated within its intracellular PPPS/TP motifs. These phosphorylated motifs are required to recruit axin and to inhibit glycogen synthase kinase 3 (GSK3), two basic components of the β-catenin destruction complex. On the basis of a kinome-wide small interfering RNA (siRNA) screen and confirmative biochemical analysis, we show that several proline-directed mitogen-activated protein kinases (MAPKs), such as p38, ERK1/2, and JNK1 are sufficient and required for the phosphorylation of PPPS/TP motifs of LRP6. External stimuli, which control the activity of MAPKs, such as phorbol esters and fibroblast growth factor 2 (FGF2) control the choice of the LRP6-PPPS/TP kinase and regulate the amplitude of LRP6 phosphorylation and WNT/β-catenin-dependent transcription. Our findings suggest that cells not only recruit one dedicated LRP6 kinase but rather select their LRP6 kinase depending on cell type and the external stimulus. Moreover, direct phosphorylation of LRP6 by MAPKs provides a unique point for convergence between WNT/β-catenin signaling and mitogenic pathways.
Zobrazit více v PubMed
Bikkavilli, R. K., M. E. Feigin, and C. C. Malbon. 2008. G alpha o mediates WNT-JNK signaling through dishevelled 1 and 3, RhoA family members, and MEKK 1 and 4 in mammalian cells. J. Cell Sci. 121:234-245. PubMed
Bikkavilli, R. K., M. E. Feigin, and C. C. Malbon. 2008. p38 mitogen-activated protein kinase regulates canonical Wnt-beta-catenin signaling by inactivation of GSK3beta. J. Cell Sci. 121:3598-3607. PubMed
Bilic, J., Y. L. Huang, G. Davidson, T. Zimmermann, C. M. Cruciat, M. Bienz, and C. Niehrs. 2007. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316:1619-1622. PubMed
Brembeck, F. H., M. Rosario, and W. Birchmeier. 2006. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr. Opin. Genet. Dev. 16:51-59. PubMed
Brembeck, F. H., T. Schwarz-Romond, J. Bakkers, S. Wilhelm, M. Hammerschmidt, and W. Birchmeier. 2004. Essential role of BCL9-2 in the switch between beta-catenin's adhesive and transcriptional functions. Genes Dev. 18:2225-2230. PubMed PMC
Bryja, V., J. Pachernik, K. Soucek, V. Horvath, P. Dvorak, and A. Hampl. 2004. Increased apoptosis in differentiating p27-deficient mouse embryonic stem cells. Cell Mol. Life Sci. 61:1384-1400. PubMed PMC
Bryja, V., G. Schulte, and E. Arenas. 2007. Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate β-catenin. Cell. Signal. 19:610-616. PubMed
Catling, A. D., H. J. Schaeffer, C. W. Reuter, G. R. Reddy, and M. J. Weber. 1995. A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function. Mol. Cell. Biol. 15:5214-5225. PubMed PMC
Chen, M., M. Philipp, J. Wang, R. T. Premont, T. R. Garrison, M. G. Caron, R. J. Lefkowitz, and W. Chen. 2009. G protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J. Biol. Chem. 284:35040-35048. PubMed PMC
Clevers, H. 2006. Wnt/beta-catenin signaling in development and disease. Cell 127:469-480. PubMed
Coso, O. A., M. Chiariello, J. C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind. 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137-1146. PubMed
Cselenyi, C. S., K. K. Jernigan, E. Tahinci, C. A. Thorne, L. A. Lee, and E. Lee. 2008. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin. Proc. Natl. Acad. Sci. U. S. A. 105:8032-8037. PubMed PMC
Davidson, G., J. Shen, Y. L. Huang, Y. Su, E. Karaulanov, K. Bartscherer, C. Hassler, P. Stannek, M. Boutros, and C. Niehrs. 2009. Cell cycle control of wnt receptor activation. Dev. Cell 17:788-799. PubMed
Davidson, G., W. Wu, J. Shen, J. Bilic, U. Fenger, P. Stannek, A. Glinka, and C. Niehrs. 2005. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867-872. PubMed
El-Hariry, I., M. Pignatelli, and N. R. Lemoine. 2001. FGF-1 and FGF-2 modulate the E-cadherin/catenin system in pancreatic adenocarcinoma cell lines. Br. J. Cancer 84:1656-1663. PubMed PMC
Hanks, S. K., and T. Hunter. 1995. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9:576-596. PubMed
Ji, H., J. Wang, H. Nika, D. Hawke, S. Keezer, Q. Ge, B. Fang, X. Fang, D. Fang, D. W. Litchfield, K. Aldape, and Z. Lu. 2009. EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol. Cell 36:547-559. PubMed PMC
Katoh, M. 2006. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol. Ther. 5:1059-1064. PubMed
Krejci, P., V. Bryja, J. Pachernik, A. Hampl, R. Pogue, P. Mekikian, and W. R. Wilcox. 2004. FGF2 inhibits proliferation and alters the cartilage-like phenotype of RCS cells. Exp. Cell Res. 297:152-164. PubMed
Lee, J. S., A. Ishimoto, and S. Yanagawa. 1999. Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J. Biol. Chem. 274:21464-21470. PubMed
Liu, G., A. Bafico, V. K. Harris, and S. A. Aaronson. 2003. A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor. Mol. Cell. Biol. 23:5825-5835. PubMed PMC
MacDonald, B. T., C. Yokota, K. Tamai, X. Zeng, and X. He. 2008. Wnt signal amplification via activity, cooperativity, and regulation of multiple intracellular PPPSP motifs in the Wnt co-receptor LRP6. J. Biol. Chem. 283:16115-16123. PubMed PMC
McGrew, L. L., S. Hoppler, and R. T. Moon. 1997. Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech. Dev. 69:105-114. PubMed
Orford, K., C. Crockett, J. P. Jensen, A. M. Weissman, and S. W. Byers. 1997. Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J. Biol. Chem. 272:24735-24738. PubMed
Peters, J. M., R. M. McKay, J. P. McKay, and J. M. Graff. 1999. Casein kinase I transduces Wnt signals. Nature 401:345-350. PubMed
Piao, S., S. H. Lee, H. Kim, S. Yum, J. L. Stamos, Y. Xu, S. J. Lee, J. Lee, S. Oh, J. K. Han, B. J. Park, W. I. Weis, and N. C. Ha. 2008. Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS One 3:e4046. PubMed PMC
Schaeffer, H. J., A. D. Catling, S. T. Eblen, L. S. Collier, A. Krauss, and M. J. Weber. 1998. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281:1668-1671. PubMed
Stokoe, D., B. Caudwell, P. T. Cohen, and P. Cohen. 1993. The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem. J. 296:843-849. PubMed PMC
Tamai, K., M. Semenov, Y. Kato, R. Spokony, C. Liu, Y. Katsuyama, F. Hess, J. P. Saint-Jeannet, and X. He. 2000. LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530-535. PubMed
Tamai, K., X. Zeng, C. Liu, X. Zhang, Y. Harada, Z. Chang, and X. He. 2004. A mechanism for Wnt coreceptor activation. Mol. Cell 13:149-156. PubMed
ten Berge, D., S. A. Brugmann, J. A. Helms, and R. Nusse. 2008. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 135:3247-3257. PubMed PMC
Thornton, T. M., G. Pedraza-Alva, B. Deng, C. D. Wood, A. Aronshtam, J. L. Clements, G. Sabio, R. J. Davis, D. E. Matthews, B. Doble, and M. Rincon. 2008. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science 320:667-670. PubMed PMC
Wolf, J., T. R. Palmby, J. Gavard, B. O. Williams, and J. S. Gutkind. 2008. Multiple PPPS/TP motifs act in a combinatorial fashion to transduce Wnt signaling through LRP6. FEBS Lett. 582:255-261. PubMed PMC
Wu, G., H. Huang, J. Garcia Abreu, and X. He. 2009. Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One 4:e4926. PubMed PMC
Zeng, X., H. Huang, K. Tamai, X. Zhang, Y. Harada, C. Yokota, K. Almeida, J. Wang, B. Doble, J. Woodgett, A. Wynshaw-Boris, J. C. Hsieh, and X. He. 2008. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 135:367-375. PubMed PMC
Zeng, X., K. Tamai, B. Doble, S. Li, H. Huang, R. Habas, H. Okamura, J. Woodgett, and X. He. 2005. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873-877. PubMed PMC
12-O-Tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling