West African medicinal plants and their constituent compounds as treatments for viral infections, including SARS-CoV-2/COVID-19

. 2022 Jun ; 30 (1) : 191-210. [epub] 20220427

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35476297

Grantová podpora
Global Challenges Research Fund (GCRF) Liverpool John Moores University
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

Odkazy

PubMed 35476297
PubMed Central PMC9043090
DOI 10.1007/s40199-022-00437-9
PII: 10.1007/s40199-022-00437-9
Knihovny.cz E-zdroje

OBJECTIVES: The recent emergence of the COVID-19 pandemic (caused by SARS-CoV-2) and the experience of its unprecedented alarming toll on humanity have shone a fresh spotlight on the weakness of global preparedness for pandemics, significant health inequalities, and the fragility of healthcare systems in certain regions of the world. It is imperative to identify effective drug treatments for COVID-19. Therefore, the objective of this review is to present a unique and contextualised collection of antiviral natural plants or remedies from the West African sub-region as existing or potential treatments for viral infections, including COVID-19, with emphasis on their mechanisms of action. EVIDENCE ACQUISITION: Evidence was synthesised from the literature using appropriate keywords as search terms within scientific databases such as Scopus, PubMed, Web of Science and Google Scholar. RESULTS: While some vaccines and small-molecule drugs are now available to combat COVID-19, access to these therapeutic entities in many countries is still quite limited. In addition, significant aspects of the symptomatology, pathophysiology and long-term prognosis of the infection yet remain unknown. The existing therapeutic armamentarium, therefore, requires significant expansion. There is evidence that natural products with antiviral effects have been used in successfully managing COVID-19 symptoms and could be developed as anti-COVID-19 agents which act through host- and virus-based molecular targets. CONCLUSION: Natural products could be successfully exploited for treating viral infections/diseases, including COVID-19. Strengthening natural products research capacity in developing countries is, therefore, a key strategy for reducing health inequalities, improving global health, and enhancing preparedness for future pandemics.

Zobrazit více v PubMed

HS Kumar A. Molecular docking of natural compounds from Tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets. BEMS Reports. 2021;6(1):11–13.

Wang S-x, Wang Y, Lu Y-b, Li J-y, Song Y-j, Nyamgerelt M, Wang X-x. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. J Integr Med. 2020;18(4):275–83. PubMed PMC

World Health Organisation. WHO Coronavirus Disease (COVID-19) Dashboard. 2020 09, August. Available from: https://covid19.who.int/.

Anandan R, Suseendran G, Zaman N, Brohi SN. Echinacea purpurea to treat Novel Coronavirus (2019-nCoV). 2020. 10.36227/techrxiv.12241223.v1

Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020; 248:117477. PubMed PMC

O'Hare B. Weak health systems and Ebola. Lancet Glob Health. 2015;3(2):e71–e72. doi: 10.1016/S2214-109X(14)70369-9. PubMed DOI

World Health Organization. A heavy burden: the productivity cost of illness in Africa. 2019. Brazzaville: WHO Regional Office for Africa; 2019. Licence: CC BY-NC-SA 3.0 IGO. https://www.afro.who.int/publications/heavy-burden-productivity-cost-illness-africa

Bougrine H, Rochon L-P. Austerity, unemployment and poverty in developing countries. In. Aggregate Demand and Employment: Edward Elgar Publishing; 2020.

Okello J, Ssegawa P. Medicinal plants used by communities of Ngai Subcounty, Apac District, northern Uganda. Afr J Ecol. 2007;45:76–83. doi: 10.1111/j.1365-2028.2007.00742.x. DOI

Simoben CV, Ntie-Kang F, Lifongo LL, Babiaka SB, Sippl W, Mbaze LM. The uniqueness and therapeutic value of natural products from West African medicinal plants, part III: least abundant compound classes. RSC Adv. 2014;4(75):40095–40110. doi: 10.1039/C4RA05376A. DOI

Oreagba IA, Oshikoya KA, Amachree M. Herbal medicine use among urban residents in Lagos, Nigeria. BMC Complement Altern Med. 2011;11(1):117. doi: 10.1186/1472-6882-11-117. PubMed DOI PMC

Naithani R, Mehta RG, Shukla D, Chandersekera SN, Moriarty RM. Antiviral activity of phytochemicals: a current perspective. In. Dietary Components and Immune Function: Springer; 2010. p. 421–468.

Niharika A, Aquicio JM, Anand A. Antifungal properties of neem (Azadirachta indica) leaves extract to treat hair dandruff. E-ISRJ. 2010;2:244–252.

Farnsworth NR. Screening plants for new medicines. Biodiversity. 1988;15(3):81–99.

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI

Popoola TD, Awodele O, Omisanya A, Obi N, Umezinwa C, Fatokun AA. Three indigenous plants used in anti-cancer remedies, Garcinia kola Heckel (stem bark), Uvaria chamae P. Beauv. (root) and Olax subscorpioidea Oliv. (root) show analgesic and anti-inflammatory activities in animal models. J Ethnopharmacol. 2016;194:440–449. doi: 10.1016/j.jep.2016.09.046. PubMed DOI

Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophy Acta (BBA) Gen Subj. 2013;1830(6):3670–3695. doi: 10.1016/j.bbagen.2013.02.008. PubMed DOI PMC

Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod. 2004;67(12):2141–2153. doi: 10.1021/np040106y. PubMed DOI

Flavin MT, Rizzo JD, Khilevich A, Kucherenko A, Sheinkman AK, Vilaychack V, Lin L, Chen W, Greenwood EM, Pengsuparp T. Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (±)-calanolide A and its enantiomers. J Med Chem. 1996;39(6):1303–1313. doi: 10.1021/jm950797i. PubMed DOI

Wilson EO. What is nature worth? The Wilson Quarterly (1976-). 2002;26(1):20–39.

Nahar L, Talukdar AD, Nath D, Nath S, Mehan A, Ismail FMD, Sarker SD. Naturally Occurring Calanolides: Occurrence, Biosynthesis, and Pharmacological Properties Including Therapeutic Potential. Molecules. 2020;25(21):4983. doi: 10.3390/molecules25214983. PubMed DOI PMC

Whitby K, Taylor D, Patel D, Ahmed P, Tyms AS. Action of celgosivir (6 O-butanoyl castanospermine) against the pestivirus BVDV: implications for the treatment of hepatitis C. Antiviral Chem Chemother. 2004;15(3):141–151. doi: 10.1177/095632020401500304. PubMed DOI

Butler MS, Robertson AA, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep. 2014;31(11):1612–1661. doi: 10.1039/C4NP00064A. PubMed DOI

Softic L, Brillet R, Berry F, Ahnou N, Nevers Q, Morin-Dewaele M, Hamadat S, Bruscella P, Fourati S, Pawlotsky J-M, Ahmed-Belkacem A. Inhibition of SARS-CoV-2 Infection by the Cyclophilin Inhibitor Alisporivir (Debio 025) Antimicrob Agents Chemother. 2020;64(7):e00876–e1820. doi: 10.1128/AAC.00876-20. PubMed DOI PMC

Elion GB, Furman PA, Fyfe JA, De Miranda P, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci. 1977;74(12):5716–5720. doi: 10.1073/pnas.74.12.5716. PubMed DOI PMC

Horwitz JP, Chua J, Noel M, Nucleosides V. The Monomesylates of 1-(2'-Deoxy-β-D-lyxofuranosyl) thymine1, 2. J Org Chem. 1964;29(7):2076–2078. doi: 10.1021/jo01030a546. DOI

Boyd M, Gustafson K, McMahon J, Shoemaker R. Discovery of cyanovirin-N, a novel HIV-inactivating protein from Nostoc ellipsosporum that targets viral gp120. In: Int. Conf. AIDS; 1996. p. 71.

Ganjhu RK, Mudgal PP, Maity H, Dowarha D, Devadiga S, Nag S, Arunkumar G. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease. 2015;26(4):225–236. doi: 10.1007/s13337-015-0276-6. PubMed DOI PMC

Likhitwitayawuid K, Chaiwiriya S, Sritularak B, Lipipun V. Antiherpetic flavones from the heartwood of Artocarpus gomezianus. Chem Biodivers. 2006;3(10):1138–1143. doi: 10.1002/cbdv.200690115. PubMed DOI

Prendergast PT. Use of cirsiliol and derivatives to treat infections. In: Google Patents; 2003. https://patents.google.com/patent/US6555523B1/en

Naithani R, Huma LC, Holland LE, Shukla D, McCormick DL, Mehta RG, Moriarty RM. Antiviral activity of phytochemicals: a comprehensive review. Mini Rev Med Chem. 2008;8(11):1106–1133. doi: 10.2174/138955708785909943. PubMed DOI

Warowicka A, Nawrot R, Goździcka-Józefiak A. Antiviral activity of berberine. Arch Virol. 2020;165(9):1935–1945. doi: 10.1007/s00705-020-04706-3. PubMed DOI PMC

Farnsworth N, Svoboda G, Blomster R. Antiviral activity of selected Catharanthus alkaloids. J Pharm Sci. 1968;57(12):2174–2175. doi: 10.1002/jps.2600571235. PubMed DOI

Orhan IE, Senol Deniz FS. Natural Products as Potential Leads Against Coronaviruses: Could They be Encouraging Structural Models Against SARS-CoV-2?. Nat Prod Bioprospecting. 2020;10(4):171–186. doi: 10.1007/s13659-020-00250-4. PubMed DOI PMC

Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front Pharmacol. 2019;10(1207). PubMed PMC

Martin KW, Ernst E. Antiviral agents from plants and herbs: a systematic review. Antivir Ther. 2003;8(2):77–90. doi: 10.1177/135965350300800201. PubMed DOI

Lin L-T, Hsu W-C, Lin C-C. Antiviral Natural Products and Herbal Medicines. J Tradit Complement Med. 2014;4(1):24–35. doi: 10.4103/2225-4110.124335. PubMed DOI PMC

Yasmin A, Chia S, Looi Q, Omar A, Noordin M, Ideris A. Herbal extracts as antiviral agents. In. Feed Additives: Elsevier; 2020. p. 115–32.

Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, Xu H. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharmaceutica Sinica B. 2020;10(7):1163–1174. doi: 10.1016/j.apsb.2020.06.002. PubMed DOI PMC

Cole N. Diversity of medicinal plants in West African habitats. In: The Biodiversity of African Plants. Springer; 1996. pp. 704–13.

Sawadogo WR, Schumacher M, Teiten M-H, Dicato M, Diederich M. Traditional West African pharmacopeia, plants and derived compounds for cancer therapy. Biochem Pharmacol. 2012;84(10):1225–1240. doi: 10.1016/j.bcp.2012.07.021. PubMed DOI

Ekanem AP, Udoh FV. The diversity of medicinal plants in Nigeria: An Overview. In: African Natural Plant Products: New Discoveries and Challenges in Chemistry and Quality. ACS Symposium Series (Vol. 1021); 2009. pp. 135–47. https://doi.org/10.1021/bk-2009-1021.ch007

Addo-Fordjour P, Belford EJD, Akonnor D. Diversity and conservation of medicinal plants in the Bomaa community of the Brong Ahafo region. Ghana Journal of medicinal plants research. 2013;2(9):226–233.

Alavi M, Ho T, Stisher C, Richardson E, Kelly C, McCrory K, Snellings J, Zurek K, Boltz MW. Factors That Influence Student Choice in Family Medicine A National Focus Group. Fam Med. 2019;51(2):143–148. doi: 10.22454/FamMed.2019.927833. PubMed DOI

Balick MJ, Cox PA. Plants, people, and culture: the science of ethnobotany: Scientific American Library, New York; 1996.

Anani K, Hudson J, De Souza C, Akpagana K, Tower G, Arnason J, Gbeassor M. Investigation of medicinal plants of Togo for antiviral and antimicrobial activities. Pharm Biol. 2000;38(1):40–45. doi: 10.1076/1388-0209(200001)38:1;1-B;FT040. PubMed DOI

Hudson J, Anani K, Lee M, De Souza C, Arnason J, Gbeassor M. Further Iinvestigations on the Antiviral Activities of Medicinal Plants of Togo. Pharm Biol. 2000;38(1):46–50. doi: 10.1076/1388-0209(200001)3811-BFT046. PubMed DOI

Sulaiman LK, Oladele OA, Shittu IA, Emikpe BO, Oladokun AT. Meseko CAJAJoB. In-ovo evaluation of the antiviral activity of methanolic root-bark extract of the African Baobab (Adansonia digitata Lin) 2011;10(20):4256–4258.

Ajaiyeoba EO, Ogbole OO. A phytotherapeutic approach to Nigerian anti-HIV and immunomodulatory drug discovery. Afr J Med Med Sci. 2006;35:71–6. PubMed

Ojo O, Oluyege J, Famurewa OJAJPS. Antiviral properties of two Nigerian plants. 2009;3(7):157–159.

Sonibare MA, Moody JO, Adesanya EO. Use of medicinal plants for the treatment of measles in Nigeria. J Ethnopharmacol. 2009;122(2):268–72. PubMed

Buochuama A, Amiofori F. The Utilization of Plant Species in the Treatment of some Identifiable Viral Diseases in Southwestern Nigeria. World Scientific News. 2018;95:111–123.

Esimone C, Omabuwajo O, Amadi C, Adikwa M, Edrada R, Proksch P, Nabi G. Antiviral potentials of Nigerians aframomum melagueta roscoe and piper guineese schum. and thonn. Niger J Nat Prod Med. 2006;10(51):54.

Ogbole OO, Akinleye TE, Segun PA, Faleye TC. Adeniji AJJVj. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. 2018;15(1):110. PubMed PMC

Ajaiyeoba E, Ogbole O. A phytotherapeutic approach to Nigerian anti-HIV and immunomodulatory drug discovery. Afr J Med Med Sci. 2006;35:71–76. PubMed

Ayisi NK. Antiviral and antibacterial activities of extracts from eight plants. In: Google Patents; 2007. https://patents.google.com/patent/US7220437

Nnoruka E, Okoye O. Topical steroid abuse: its use as a depigmenting agent. J Natl Med Assoc. 2006;98(6):934. PubMed PMC

Mathieu G, Meissa D. Traditional leafy vegetables in Senegal: diversity and medicinal uses. Afr J Tradit Complement Altern Med. 2007;4(4):469–475. doi: 10.4314/ajtcam.v4i4.31239. PubMed DOI PMC

Kudi AC, Myint SH. Antiviral activity of some Nigerian medicinal plant extracts. J Ethnopharmacol. 1999;68(1):289–294. doi: 10.1016/S0378-8741(99)00049-5. PubMed DOI

Adjanohoun E, Adjakidje V, Ahyi M, Akoegninou A, d'Almeida J, Apovo F, Boukef K, Chadare M, Gusset G, Dramane KDK. In: Contribution aux études ethnobotaniques et floristiques en République populaire du Bénin. Agence de coopération culturelle et technique,(ACCT), Paris, 895 p. Système. [ONLINE] Disponible à l'adresse; 1989.

Ohemu T, Agunu A, Chollom S, Okwori V, Dalen D, Olotu P. Preliminary phytochemical screening and antiviral potential of methanol stem bark extract of Enantia chlorantha Oliver (Annonaceae) and Boswellia dalzielii Hutch (Burseraceae) against Newcastle disease in Ovo. European Journal of Medicinal Plants. 2018:1–8.

Atawodi SE, Atawodi JC. Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochem Rev. 2009;8(3):601–620.

Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J Ethnopharmacol. 2002;79(2):273–278. doi: 10.1016/S0378-8741(01)00395-6. PubMed DOI

Ajaiyeoba E, Ogbole O, Ogundipe O. Ethnobotanical survey of Plants used in the traditional management of viral infections in Ogun State of Nigeria. Editorial Advisory Board e. 2005;13(1):64–73.

Oluremi BB, Adeniji JA. Anti-viral Activity Evaluation of Selected Medicinal Plants of Nigeria against Measles Virus. Microbiol Res J Int. 2015:218–25.

Gbadamosi IT. Stay Safe: Helpful Herbal remedies in COVID-19 infection. Afr J Biomed Res. 2020;23(2):131–133.

Abonyi DO, Abonyi MU, Esimone CO, Ibezim EC. Plants as sources of antiviral agents. Afr J Biotechnol. 2009;8(17):3989–94.

Chukwuma OJT. Antiviral Activities of the Aqueous, Ethanolic and Methanolic Extracts of Diospyros Mespiliformis leaf on some pathogenic Avian viruses. IDOSR J Exp Sci. 2017;2(3):35–49.

Wannang NN, Kwanashie HO, Ede SO. Antiviral activity of the fruit extract of Cucumis metuliferus E. Meye (Curcubitaceae) in chicks. AJBAS 2010;2(3-4): 89–93.

Olugbuyiro J. Inhibitory activity of Detarium microcarpum extract against hepatitis C virus. Afr J Biomed Res. 2009;12(2):149–151.

Moody JO, Robert VA. Hughes Jd-A. Antiviral activities of selected medicinal plants II: Effect of extracts of Diospyros barteri, Diospyros monbutensis and Sphenocentrum jollyanum on Cowpea Mosaic viruses. Pharm Biol. 2002;40(5):342–5.

Arnold H-J, Gulumian M. Pharmacopoeia of traditional medicine in Venda. J Ethnopharmacol. 1984;12(1):35–74. doi: 10.1016/0378-8741(84)90086-2. PubMed DOI

Adeniyi BA, Ayepola OO, Adu FD. The antiviral activity of leaves of Eucalyptus camaldulensis (Dehn) and Eucalyptus torelliana (R. Muell) Pak J Pharm Sci. 2015;28(5):1773–1776. PubMed

Hudson J, Lee M, Rasoanaivo P. Antiviral activities in plants endemic to Madagascar. Pharm Biol. 2000;38(1):36–39. doi: 10.1076/1388-0209(200001)3811-BFT036. PubMed DOI

Malzy P. Quelques plantes du Nord Cameroun et leurs utilisations. Journal d'agriculture traditionnelle et de botanique appliquée. 1954;1(5):148–179. doi: 10.3406/jatba.1954.2147. DOI

Adjanohoun E, Adjakidje V, Ahyi M, Akpagana K, Chibon P, El-Hadji A, Eyme J, Garba M, Gassita J, Gbeassor M, Goudote E, Guinko S, Hodouto K-K, Houngnon, Keita PA, Keoula Y, Kluga -Ocloo WP, Lo I, Siamevi KM, Taffame, KK. In: Contribution aux études ethnobotaniques et floristiques au Togo Agence de coopération culturelle et technique (ACCT), Paris; 1986. p. 671.

Omilabu S. Antiviral Properties of African Medicinal Plants. In: Odugbemi TA, editor. Textbook of Medicinal Plants from Nigeria; 2008.

Ogbole O, Segun P, Akinleye T, Fasinu P. Antiprotozoal, antiviral and cytotoxic properties of the Nigerian Mushroom, Hypoxylon fuscum Pers. Fr.(Xylariaceae). ACTA Pharm Sci. 2018;56(4):43–56.

Esimone C, Omobowajo O, Sowemimo A, Proksch P. Single-cycle vector-based antiviral screening assays for high throughput evaluation of potential anti-HIV medicinal plants: a pilot study on some Nigerian herbs. Recent progress in medicinal plant research. 2007;19:49–60.

Adjanohoun E, Ahyi MRA, Ake-Assi L, Elewude JA, Dramane K, Fadoju SO, Gbile ZO, Goudole E, Johnson CLA, Keita A, Morakinyo O, Ojewole JAO, Olatunji AO, Sofowora EA. Traditional Medicine and Pharmacopoeia. Contribution to Ethnobotanical Floristic Studies in Western Nigeria. Lagos, Nigeria: Organization of African Unity, Scientific Technical and Research Commission; 1991. p. 420.

Oridupa O, Saba A, Sulaiman L. Preliminary report on the antiviral activity of the ethanolic fruit extract of Lagenaria breviflora Roberts on Newcastle disease virus. Trop Vet. 2011;29(1):22–33.

Ogbole OO, Adeniji AJ, Ajaiyeoba EO, Adu FD. Anti-poliovirus activity of medicinal plants selected from the Nigerian ethno-medicine. Afr J Biotechnol. 2013;12(24):3878–83.

Agbo MO, Odimegwu DC, Okoye FBC, Osadebe PO. Antiviral activity of Salidroside from the leaves of Nigerian mistletoe (Loranthus micranthus Linn) parasitic on Hevea brasiliensis against respiratory syncytial virus. Pak J Pharm Sci. 2017;30(4):1251–1256. PubMed

Segun PA, Ogbole OO, Akinleye TE, Faleye TO, Adeniji AJ. In vitro anti-enteroviral activity of stilbenoids isolated from the leaves of Macaranga barteri. Nat Prod Res. 2021;35(11): 1909–13. PubMed

Chollom S, Agada G, Gotep J, Mwankon S, Dus P, Bot Y, Nyango D, Singnap C, Fyaktu E, Okwori A. Investigation of aqueous extract of Moringa oleifera lam seed for antiviral activity against newcastle disease virus in ovo. J Med Plants Res. 2012;6(22):3870–3875. doi: 10.5897/JMPR12.394. DOI

Adjanohoun E, Aké Assi L, Ali A. Contribution aux études ethnobotaniques et floristiques aux Comores. Rapport présenté à l’ACCT; 1982.

Faeji C, Oladunmoye M, Adebayo I, Adebolu T. In-ovo biological activities of Phyllanthus amarus leaf extracts against Newcastle disease virus. J Med Plants Res. 2017;11:419–425. doi: 10.5897/JMPR2017.6379. DOI

Akoegninou A, Adjanohoun E, Adjakidje M, Ahyi L, Ake Assi A, Akoegninou J, d'Almeida F, Apovo K, Boukef M, Chadare G, Gusset K. Contribution aux études ethnobotaniques et floristiques en République Populaire du Bénin. Médecine traditionnelle et pharmacopée Agence de coopération culturelle et technique, (ACCT), Paris; 1989. p. 895.

Chollom S, Agada G, Bot D, Okolo M, Dantong D, Choji T, Echeonwu B, Bigwan E, Lokason S, Banwat E. Phytochemical analysis and antiviral potential of aqueous leaf extract of Psidium guajava against newcastle disease virus in ovo. J Appl Pharm Sci. 2012;2(10):045–049.

Esimone C, Grunwald T, Wildner O, Nchinda G, Tippler B, Proksch P, Ueberla K. In vitro pharmacodynamic evaluation of antiviral medicinal plants using a vector-based assay technique. J Appl Microbiol. 2005;99(6):1346–1355. doi: 10.1111/j.1365-2672.2005.02732.x. PubMed DOI

Esimone C, Grunwald T, Nworu C, Kuate S, Proksch P, Überla K. Broad spectrum antiviral fractions from the lichen Ramalina farinacea (L.) Ach. Chemotherapy. 2009;55(2):119–126. doi: 10.1159/000194974. PubMed DOI

Lai D, Odimegwu DC, Esimone C, Grunwald T, Proksch P. Phenolic compounds with in vitro activity against respiratory syncytial virus from the Nigerian lichen Ramalina farinacea. Planta Med. 2013;79(15):1440–1446. doi: 10.1055/s-0033-1350711. PubMed DOI

Odimegwu DC, Esimone CO. In vitro Antiviral Activity of Nauclea latifolia Root Bark Extract Against the Respiratory Syncytial Virus. European J Med Plants. 2018;22(2):1–7.

Moody J, Roberts V. Antiviral effect of selected medicinal Plants 1: effect of Diospyros bateri, Diospyros monbutensis and Sphenocentrum jollyanum on Polio Viruses. Niger J Nat Prod Med. 2002;6(1):4–6.

Olowokudejo J, Kadiri A, Travih V. An ethnobotanical survey of herbal markets and medicinal plants in Lagos State of Nigeria. Ethnobotanical Leaflets 2008;12:851–65.

Carrière M. Plantes de Guineée à l'usage des éleveurs et des vétérinaires: CIRAD-EMVT; 1994. p. 235.

Vlietinck A, Van Hoof L, Totte J, Lasure A, Berghe DV, Rwangabo P, Mvukiyumwami J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol. 1995;46(1):31–47. doi: 10.1016/0378-8741(95)01226-4. PubMed DOI

Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem. 2021;476(6):2345–64. PubMed PMC

Weng J-K. Plant Solutions for the COVID-19 Pandemic and Beyond: Historical Reflections and Future Perspectives. Mol Plant. 2020;13(6):803–7. PubMed PMC

Iwuoha VC, Ezeibe EN, Ezeibe CC. Glocalization of COVID-19 responses and management of the pandemic in Africa. Local Environ. 2020;25(8):641–7.

Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. Anti-viral potential of garlic (Allium sativum) and it's organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol. 2020;104:219–234. PubMed PMC

World Health Organisation (WHO). Expert panel endorses protocol for COVID-19 herbal medicine clinical trials. 2020. https://www.afro.who.int/news/expert-panel-endorses-protocol-covid-19-herbal-medicine-clinical-trials

ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural Basis of SARS-CoV-2 3CLpro and Anti-COVID-19 Drug Discovery from Medicinal Plants J Pharm Anal. 2020;10(4):313–9. PubMed PMC

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–80. PubMed PMC

Nguyen TTH, Woo H-J, Kang H-K, Kim Y-M, Kim D-W, Ahn S-A, Xia Y, Kim D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett. 2012;34(5):831–838. doi: 10.1007/s10529-011-0845-8. PubMed DOI PMC

Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, Li RS, Tan X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005;67(1):18–23. doi: 10.1016/j.antiviral.2005.02.007. PubMed DOI PMC

Chen H, Du Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints 2020, 2020010358. 10.20944/preprints202001.0358.v3.

De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther. 2006;4(2):291–302. doi: 10.1586/14787210.4.2.291. PubMed DOI PMC

Jo S, Kim S, Shin DH, Kim M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35(1):145–151. doi: 10.1080/14756366.2019.1690480. PubMed DOI PMC

Utomo RY, Meiyanto E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints 2020, 2020030214. 10.20944/preprints202003.0214.v1.

Jeong GU, Song H, Yoon GY, Kim D, Kwon Y-C. Therapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review. Front Microbiol. 2020;11:1723. PubMed PMC

Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytotherapy research : PTR. 2020;34(12):3137–3147. doi: 10.1002/ptr.6781. PubMed DOI PMC

Ziai SA, Heidari MR, Amin Gh, Koochemeshki A, Heidari M. Inhibitory Effects of Germinal Angiotensin Converting Enzyme by Medicinal Plants Used in Iranian Traditional Medicine as Antihypertensive. J Kerman Univ Med Sci. 2009;16(2):134–43.

Shojai TM, Langeroudi AG, Karimi V, Barin A, Sadri N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6(4):458–67. PubMed PMC

Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007;75(3):179–187. doi: 10.1016/j.antiviral.2007.03.003. PubMed DOI PMC

Cheng B, Li T. Discovery of alliin as a putative inhibitor of the main protease of SARS-CoV-2 by molecular docking. Biotechniques. 2020;69(2):108–12. PubMed PMC

Vimalanathan S, Hudson J. Anti-influenza virus activity of essential oils and vapors. American Journal of Essential Oils and Natural Products. 2014;2(1):47–53.

Shin H-B, Choi M-S, Yi C-M, Lee J, Kim N-J, Inn K-S. Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine. Int Immunopharmacol. 2015;27(1):65–68. doi: 10.1016/j.intimp.2015.04.045. PubMed DOI

Fan Y, Zhang Y, Tariq A, Jiang X, Ahamd Z, Zhihao Z, Idrees M, Azizullah A, Adnan M, Bussmann RW. Food as medicine: a possible preventive measure against coronavirus disease (COVID‐19). Phytother Res. 2020;34(12):3124–36. PubMed PMC

Joshi RS, Jagdale SS, Bansode SB, Shankar SS, Tellis MB, Pandya VK, Chugh A, Giri AP, Kulkarni MJ. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J Biomol Struct Dyn. 2021;39(9):3099–114. PubMed PMC

Nallusamy S, Mannu J, Ravikumar C, Angamuthu K, Nathan B, Nachimuthu K, Ramasamy G, Muthurajan R, Subbarayalu M, Neelakandan K. Exploring Phytochemicals of Traditional Medicinal Plants Exhibiting Inhibitory Activity Against Main Protease, Spike Glycoprotein, RNA-dependent RNA Polymerase and Non-Structural Proteins of SARS-CoV-2 Through Virtual Screening. Front Pharmacol. 2021;12:667704. PubMed PMC

Olubiyi OO, Olagunju M, Keutmann M, Loschwitz J, Strodel B. High throughput virtual screening to discover inhibitors of the main protease of the coronavirus SARS-CoV-2. Molecules. 2020;25(14):3193. PubMed PMC

Anand AV, Balamuralikrishnan B, Kaviya M, Bharathi K, Parithathvi A, Arun M, Senthilkumar N, Velayuthaprabhu S, Saradhadevi M, Al-Dhabi NA. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules. 2021;26(6):1775. doi: 10.3390/molecules26061775. PubMed DOI PMC

Roy S, Bhattacharyya P. Possible role of traditional medicinal plant Neem (Azadirachta indica) for the management of COVID-19 infection. Int J Res Pharm Sci. 2020;11(SPL1):122–125. doi: 10.26452/ijrps.v11iSPL1.2256. DOI

Borkotoky S, Banerjee M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J Biomol Struct Dyn. 2021;39(11):4111–21. PubMed PMC

Subramanian SS. Some Compounds from Neem leaves extract exhibit binding affinity as high as -14.3 kcal/mol against COVID-19 Main Protease (Mpro): A Molecular Docking Study. 2020. 10.21203/rs.3.rs-25649/v1.

Maurya VK, Kumar S, Bhatt ML, Saxena SK. Therapeutic Development and Drugs for the Treatment of COVID-19. In: Saxena S, editor. Coronavirus Disease 2019 (COVID-19). Singapore: Springer; 2020. pp. 109–126. https://doi.org/10.1007/978-981-15-4814-7_10

Krokhin O, Li Y, Andonov A, Feldmann H, Flick R, Jones S, Stroeher U, Bastien N, Dasuri KV, Cheng K. Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. Mol Cell Proteomics. 2003;2(5):346–356. doi: 10.1074/mcp.M300048-MCP200. PubMed DOI PMC

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–3. PubMed PMC

Zhong X, Qi G, Yang J, Xing G, Liu J, Yang X. High-efficiency expression of a receptor-binding domain of SARS-CoV spike protein in tobacco chloroplasts. Sheng Wu Gong Cheng Xue Bao= Chin J Biotechnol. 2014;30(6):920–30. PubMed

Zheng N, Xia R, Yang C, Yin B, Li Y, Duan C, Liang L, Guo H, Xie Q. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine. 2009;27(36):5001–5007. doi: 10.1016/j.vaccine.2009.05.073. PubMed DOI PMC

Chang F-R, Yen C-T, Ei-Shazly M, Lin W-H, Yen M-H, Lin K-H, Wu Y-C. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat Prod Commun. 2012;7(11):1415–7. PubMed

Caricchio R, Gallucci M, Dass C, Zhang X, Gallucci S, Fleece D, Bromberg M, Criner GJ. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis. 2021;80:88–95. PubMed

Campbell CM, Guha A, Haque T, Neilan TG, Addison D. Repurposing Immunomodulatory Therapies against Coronavirus Disease 2019 (COVID-19) in the Era of Cardiac Vigilance: A Systematic Review. J Clin Med. 2020;9(9):2935. doi: 10.3390/jcm9092935. PubMed DOI PMC

Boudjeko T, Megnekou R, Woguia AL, Kegne FM, Ngomoyogoli JEK, Tchapoum CDN, Koum O. Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and HE Robins leaves. BMC Res Notes. 2015;8(1):759. PubMed PMC

Ishikawa H, Saeki T, Otani T, Suzuki T, Shimozuma K, Nishino H, Fukuda S, Morimoto K. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J Nutr. 2006;136(3):816S–20S. doi: 10.1093/jn/136.3.816S. PubMed DOI

Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. European Journal of Integrative Medicine. 2019:101011.

Makare N, Bodhankar S, Rangari V. Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice. J Ethnopharmacol. 2001;78(2–3):133–37. PubMed

De L, De T. Protective Foods to Develop Immunity of Individuals against COVID 19. Biotica Research Today. 2020;2(5 Spl.):287–90.

Subhrajyoti C, Sciences IM. Immunomodulatory herbs of Ayurveda and Covid-19: A Review Article. Journal of Ayurveda. 2020;5(2):203–208.

Rahmani AH. Cassia fistula Linn: Potential candidate in the health management. Pharmacognosy Res. 2015;7(3):217. doi: 10.4103/0974-8490.157956. PubMed DOI PMC

Cheng L, Zheng W, Li M, Huang J, Bao S, Xu Q, Ma Z. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Preprints. 2020;2020020313. PubMed PMC

Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh‐Attar MJ. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID‐19. Phytother Res. 2020;34:3137–47. PubMed PMC

Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Accelerated production of hesperidin-rich citrus pectin from waste citrus peel for prevention and therapy of COVID-19. Preprints. 2020. 10.20944/preprints202003.0386.v1.

Liu Y-W, Liu J-C, Huang C-Y, Wang C-K, Shang H-F, Hou W-C. Effects of oral administration of yam tuber storage protein, dioscorin, to BALB/c mice for 21-days on immune responses. J Agric Food Chem. 2009;57(19):9274–9279. doi: 10.1021/jf902245k. PubMed DOI

Fu S-L, Hsu Y-H, Lee P-Y, Hou W-C, Hung L-C, Lin C-H, Chen C-M, Huang Y-J. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages. Biochem Biophys Res Commun. 2006;339(1):137–144. doi: 10.1016/j.bbrc.2005.11.005. PubMed DOI

Wen C-C, Chen H-M, Yang N-S. Chapter 6 - Developing Phytocompounds from Medicinal Plants as Immunomodulators. In: Shyur L-F, Lau ASY, editors. Advances in Botanical Research: Academic Press; 2012. vol. 62, pp. 197–272. PubMed PMC

Muhammad BY, Awaisu A. The need for enhancement of research, development, and commercialization of natural medicinal products in Nigeria: Lessons from the Malaysian experience. Afr J Tradit Complement Altern Med. 2008;5(2):120–30. PubMed PMC

Awodele O, Daniel A, Popoola T, Salami E. A study on pharmacovigilance of herbal medicines in Lagos West Senatorial District. Nigeria Int J Risk Saf Med. 2013;25(4):205–217. doi: 10.3233/JRS-130604. PubMed DOI

World Health Organization. Programme on Traditional Medicine. National policy on traditional medicine and regulation of herbal medicines : report of a WHO global survey. World Health Organization; 2005. https://apps.who.int/iris/handle/10665/43229

Awodele O, Popoola T, Amadi K, Coker H, Akintonwa A. Traditional medicinal plants in Nigeria—Remedies or risks. J Ethnopharmacol. 2013;150(2):614–618. doi: 10.1016/j.jep.2013.09.015. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...