West African medicinal plants and their constituent compounds as treatments for viral infections, including SARS-CoV-2/COVID-19
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Global Challenges Research Fund (GCRF)
Liverpool John Moores University
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
35476297
PubMed Central
PMC9043090
DOI
10.1007/s40199-022-00437-9
PII: 10.1007/s40199-022-00437-9
Knihovny.cz E-zdroje
- Klíčová slova
- Antiviral, COVID-19, Medicinal Plants, SARS-CoV-2, Traditional Medicine, West Africa,
- MeSH
- antivirové látky terapeutické užití MeSH
- biologické přípravky * MeSH
- farmakoterapie COVID-19 * MeSH
- léčivé rostliny * MeSH
- lidé MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- biologické přípravky * MeSH
OBJECTIVES: The recent emergence of the COVID-19 pandemic (caused by SARS-CoV-2) and the experience of its unprecedented alarming toll on humanity have shone a fresh spotlight on the weakness of global preparedness for pandemics, significant health inequalities, and the fragility of healthcare systems in certain regions of the world. It is imperative to identify effective drug treatments for COVID-19. Therefore, the objective of this review is to present a unique and contextualised collection of antiviral natural plants or remedies from the West African sub-region as existing or potential treatments for viral infections, including COVID-19, with emphasis on their mechanisms of action. EVIDENCE ACQUISITION: Evidence was synthesised from the literature using appropriate keywords as search terms within scientific databases such as Scopus, PubMed, Web of Science and Google Scholar. RESULTS: While some vaccines and small-molecule drugs are now available to combat COVID-19, access to these therapeutic entities in many countries is still quite limited. In addition, significant aspects of the symptomatology, pathophysiology and long-term prognosis of the infection yet remain unknown. The existing therapeutic armamentarium, therefore, requires significant expansion. There is evidence that natural products with antiviral effects have been used in successfully managing COVID-19 symptoms and could be developed as anti-COVID-19 agents which act through host- and virus-based molecular targets. CONCLUSION: Natural products could be successfully exploited for treating viral infections/diseases, including COVID-19. Strengthening natural products research capacity in developing countries is, therefore, a key strategy for reducing health inequalities, improving global health, and enhancing preparedness for future pandemics.
Zobrazit více v PubMed
HS Kumar A. Molecular docking of natural compounds from Tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets. BEMS Reports. 2021;6(1):11–13.
Wang S-x, Wang Y, Lu Y-b, Li J-y, Song Y-j, Nyamgerelt M, Wang X-x. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. J Integr Med. 2020;18(4):275–83. PubMed PMC
World Health Organisation. WHO Coronavirus Disease (COVID-19) Dashboard. 2020 09, August. Available from: https://covid19.who.int/.
Anandan R, Suseendran G, Zaman N, Brohi SN. Echinacea purpurea to treat Novel Coronavirus (2019-nCoV). 2020. 10.36227/techrxiv.12241223.v1
Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020; 248:117477. PubMed PMC
O'Hare B. Weak health systems and Ebola. Lancet Glob Health. 2015;3(2):e71–e72. doi: 10.1016/S2214-109X(14)70369-9. PubMed DOI
World Health Organization. A heavy burden: the productivity cost of illness in Africa. 2019. Brazzaville: WHO Regional Office for Africa; 2019. Licence: CC BY-NC-SA 3.0 IGO. https://www.afro.who.int/publications/heavy-burden-productivity-cost-illness-africa
Bougrine H, Rochon L-P. Austerity, unemployment and poverty in developing countries. In. Aggregate Demand and Employment: Edward Elgar Publishing; 2020.
Okello J, Ssegawa P. Medicinal plants used by communities of Ngai Subcounty, Apac District, northern Uganda. Afr J Ecol. 2007;45:76–83. doi: 10.1111/j.1365-2028.2007.00742.x. DOI
Simoben CV, Ntie-Kang F, Lifongo LL, Babiaka SB, Sippl W, Mbaze LM. The uniqueness and therapeutic value of natural products from West African medicinal plants, part III: least abundant compound classes. RSC Adv. 2014;4(75):40095–40110. doi: 10.1039/C4RA05376A. DOI
Oreagba IA, Oshikoya KA, Amachree M. Herbal medicine use among urban residents in Lagos, Nigeria. BMC Complement Altern Med. 2011;11(1):117. doi: 10.1186/1472-6882-11-117. PubMed DOI PMC
Naithani R, Mehta RG, Shukla D, Chandersekera SN, Moriarty RM. Antiviral activity of phytochemicals: a current perspective. In. Dietary Components and Immune Function: Springer; 2010. p. 421–468.
Niharika A, Aquicio JM, Anand A. Antifungal properties of neem (Azadirachta indica) leaves extract to treat hair dandruff. E-ISRJ. 2010;2:244–252.
Farnsworth NR. Screening plants for new medicines. Biodiversity. 1988;15(3):81–99.
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI
Popoola TD, Awodele O, Omisanya A, Obi N, Umezinwa C, Fatokun AA. Three indigenous plants used in anti-cancer remedies, Garcinia kola Heckel (stem bark), Uvaria chamae P. Beauv. (root) and Olax subscorpioidea Oliv. (root) show analgesic and anti-inflammatory activities in animal models. J Ethnopharmacol. 2016;194:440–449. doi: 10.1016/j.jep.2016.09.046. PubMed DOI
Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophy Acta (BBA) Gen Subj. 2013;1830(6):3670–3695. doi: 10.1016/j.bbagen.2013.02.008. PubMed DOI PMC
Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod. 2004;67(12):2141–2153. doi: 10.1021/np040106y. PubMed DOI
Flavin MT, Rizzo JD, Khilevich A, Kucherenko A, Sheinkman AK, Vilaychack V, Lin L, Chen W, Greenwood EM, Pengsuparp T. Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (±)-calanolide A and its enantiomers. J Med Chem. 1996;39(6):1303–1313. doi: 10.1021/jm950797i. PubMed DOI
Wilson EO. What is nature worth? The Wilson Quarterly (1976-). 2002;26(1):20–39.
Nahar L, Talukdar AD, Nath D, Nath S, Mehan A, Ismail FMD, Sarker SD. Naturally Occurring Calanolides: Occurrence, Biosynthesis, and Pharmacological Properties Including Therapeutic Potential. Molecules. 2020;25(21):4983. doi: 10.3390/molecules25214983. PubMed DOI PMC
Whitby K, Taylor D, Patel D, Ahmed P, Tyms AS. Action of celgosivir (6 O-butanoyl castanospermine) against the pestivirus BVDV: implications for the treatment of hepatitis C. Antiviral Chem Chemother. 2004;15(3):141–151. doi: 10.1177/095632020401500304. PubMed DOI
Butler MS, Robertson AA, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep. 2014;31(11):1612–1661. doi: 10.1039/C4NP00064A. PubMed DOI
Softic L, Brillet R, Berry F, Ahnou N, Nevers Q, Morin-Dewaele M, Hamadat S, Bruscella P, Fourati S, Pawlotsky J-M, Ahmed-Belkacem A. Inhibition of SARS-CoV-2 Infection by the Cyclophilin Inhibitor Alisporivir (Debio 025) Antimicrob Agents Chemother. 2020;64(7):e00876–e1820. doi: 10.1128/AAC.00876-20. PubMed DOI PMC
Elion GB, Furman PA, Fyfe JA, De Miranda P, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci. 1977;74(12):5716–5720. doi: 10.1073/pnas.74.12.5716. PubMed DOI PMC
Horwitz JP, Chua J, Noel M, Nucleosides V. The Monomesylates of 1-(2'-Deoxy-β-D-lyxofuranosyl) thymine1, 2. J Org Chem. 1964;29(7):2076–2078. doi: 10.1021/jo01030a546. DOI
Boyd M, Gustafson K, McMahon J, Shoemaker R. Discovery of cyanovirin-N, a novel HIV-inactivating protein from Nostoc ellipsosporum that targets viral gp120. In: Int. Conf. AIDS; 1996. p. 71.
Ganjhu RK, Mudgal PP, Maity H, Dowarha D, Devadiga S, Nag S, Arunkumar G. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease. 2015;26(4):225–236. doi: 10.1007/s13337-015-0276-6. PubMed DOI PMC
Likhitwitayawuid K, Chaiwiriya S, Sritularak B, Lipipun V. Antiherpetic flavones from the heartwood of Artocarpus gomezianus. Chem Biodivers. 2006;3(10):1138–1143. doi: 10.1002/cbdv.200690115. PubMed DOI
Prendergast PT. Use of cirsiliol and derivatives to treat infections. In: Google Patents; 2003. https://patents.google.com/patent/US6555523B1/en
Naithani R, Huma LC, Holland LE, Shukla D, McCormick DL, Mehta RG, Moriarty RM. Antiviral activity of phytochemicals: a comprehensive review. Mini Rev Med Chem. 2008;8(11):1106–1133. doi: 10.2174/138955708785909943. PubMed DOI
Warowicka A, Nawrot R, Goździcka-Józefiak A. Antiviral activity of berberine. Arch Virol. 2020;165(9):1935–1945. doi: 10.1007/s00705-020-04706-3. PubMed DOI PMC
Farnsworth N, Svoboda G, Blomster R. Antiviral activity of selected Catharanthus alkaloids. J Pharm Sci. 1968;57(12):2174–2175. doi: 10.1002/jps.2600571235. PubMed DOI
Orhan IE, Senol Deniz FS. Natural Products as Potential Leads Against Coronaviruses: Could They be Encouraging Structural Models Against SARS-CoV-2?. Nat Prod Bioprospecting. 2020;10(4):171–186. doi: 10.1007/s13659-020-00250-4. PubMed DOI PMC
Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front Pharmacol. 2019;10(1207). PubMed PMC
Martin KW, Ernst E. Antiviral agents from plants and herbs: a systematic review. Antivir Ther. 2003;8(2):77–90. doi: 10.1177/135965350300800201. PubMed DOI
Lin L-T, Hsu W-C, Lin C-C. Antiviral Natural Products and Herbal Medicines. J Tradit Complement Med. 2014;4(1):24–35. doi: 10.4103/2225-4110.124335. PubMed DOI PMC
Yasmin A, Chia S, Looi Q, Omar A, Noordin M, Ideris A. Herbal extracts as antiviral agents. In. Feed Additives: Elsevier; 2020. p. 115–32.
Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, Xu H. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharmaceutica Sinica B. 2020;10(7):1163–1174. doi: 10.1016/j.apsb.2020.06.002. PubMed DOI PMC
Cole N. Diversity of medicinal plants in West African habitats. In: The Biodiversity of African Plants. Springer; 1996. pp. 704–13.
Sawadogo WR, Schumacher M, Teiten M-H, Dicato M, Diederich M. Traditional West African pharmacopeia, plants and derived compounds for cancer therapy. Biochem Pharmacol. 2012;84(10):1225–1240. doi: 10.1016/j.bcp.2012.07.021. PubMed DOI
Ekanem AP, Udoh FV. The diversity of medicinal plants in Nigeria: An Overview. In: African Natural Plant Products: New Discoveries and Challenges in Chemistry and Quality. ACS Symposium Series (Vol. 1021); 2009. pp. 135–47. https://doi.org/10.1021/bk-2009-1021.ch007
Addo-Fordjour P, Belford EJD, Akonnor D. Diversity and conservation of medicinal plants in the Bomaa community of the Brong Ahafo region. Ghana Journal of medicinal plants research. 2013;2(9):226–233.
Alavi M, Ho T, Stisher C, Richardson E, Kelly C, McCrory K, Snellings J, Zurek K, Boltz MW. Factors That Influence Student Choice in Family Medicine A National Focus Group. Fam Med. 2019;51(2):143–148. doi: 10.22454/FamMed.2019.927833. PubMed DOI
Balick MJ, Cox PA. Plants, people, and culture: the science of ethnobotany: Scientific American Library, New York; 1996.
Anani K, Hudson J, De Souza C, Akpagana K, Tower G, Arnason J, Gbeassor M. Investigation of medicinal plants of Togo for antiviral and antimicrobial activities. Pharm Biol. 2000;38(1):40–45. doi: 10.1076/1388-0209(200001)38:1;1-B;FT040. PubMed DOI
Hudson J, Anani K, Lee M, De Souza C, Arnason J, Gbeassor M. Further Iinvestigations on the Antiviral Activities of Medicinal Plants of Togo. Pharm Biol. 2000;38(1):46–50. doi: 10.1076/1388-0209(200001)3811-BFT046. PubMed DOI
Sulaiman LK, Oladele OA, Shittu IA, Emikpe BO, Oladokun AT. Meseko CAJAJoB. In-ovo evaluation of the antiviral activity of methanolic root-bark extract of the African Baobab (Adansonia digitata Lin) 2011;10(20):4256–4258.
Ajaiyeoba EO, Ogbole OO. A phytotherapeutic approach to Nigerian anti-HIV and immunomodulatory drug discovery. Afr J Med Med Sci. 2006;35:71–6. PubMed
Ojo O, Oluyege J, Famurewa OJAJPS. Antiviral properties of two Nigerian plants. 2009;3(7):157–159.
Sonibare MA, Moody JO, Adesanya EO. Use of medicinal plants for the treatment of measles in Nigeria. J Ethnopharmacol. 2009;122(2):268–72. PubMed
Buochuama A, Amiofori F. The Utilization of Plant Species in the Treatment of some Identifiable Viral Diseases in Southwestern Nigeria. World Scientific News. 2018;95:111–123.
Esimone C, Omabuwajo O, Amadi C, Adikwa M, Edrada R, Proksch P, Nabi G. Antiviral potentials of Nigerians aframomum melagueta roscoe and piper guineese schum. and thonn. Niger J Nat Prod Med. 2006;10(51):54.
Ogbole OO, Akinleye TE, Segun PA, Faleye TC. Adeniji AJJVj. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses. 2018;15(1):110. PubMed PMC
Ajaiyeoba E, Ogbole O. A phytotherapeutic approach to Nigerian anti-HIV and immunomodulatory drug discovery. Afr J Med Med Sci. 2006;35:71–76. PubMed
Ayisi NK. Antiviral and antibacterial activities of extracts from eight plants. In: Google Patents; 2007. https://patents.google.com/patent/US7220437
Nnoruka E, Okoye O. Topical steroid abuse: its use as a depigmenting agent. J Natl Med Assoc. 2006;98(6):934. PubMed PMC
Mathieu G, Meissa D. Traditional leafy vegetables in Senegal: diversity and medicinal uses. Afr J Tradit Complement Altern Med. 2007;4(4):469–475. doi: 10.4314/ajtcam.v4i4.31239. PubMed DOI PMC
Kudi AC, Myint SH. Antiviral activity of some Nigerian medicinal plant extracts. J Ethnopharmacol. 1999;68(1):289–294. doi: 10.1016/S0378-8741(99)00049-5. PubMed DOI
Adjanohoun E, Adjakidje V, Ahyi M, Akoegninou A, d'Almeida J, Apovo F, Boukef K, Chadare M, Gusset G, Dramane KDK. In: Contribution aux études ethnobotaniques et floristiques en République populaire du Bénin. Agence de coopération culturelle et technique,(ACCT), Paris, 895 p. Système. [ONLINE] Disponible à l'adresse; 1989.
Ohemu T, Agunu A, Chollom S, Okwori V, Dalen D, Olotu P. Preliminary phytochemical screening and antiviral potential of methanol stem bark extract of Enantia chlorantha Oliver (Annonaceae) and Boswellia dalzielii Hutch (Burseraceae) against Newcastle disease in Ovo. European Journal of Medicinal Plants. 2018:1–8.
Atawodi SE, Atawodi JC. Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochem Rev. 2009;8(3):601–620.
Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J Ethnopharmacol. 2002;79(2):273–278. doi: 10.1016/S0378-8741(01)00395-6. PubMed DOI
Ajaiyeoba E, Ogbole O, Ogundipe O. Ethnobotanical survey of Plants used in the traditional management of viral infections in Ogun State of Nigeria. Editorial Advisory Board e. 2005;13(1):64–73.
Oluremi BB, Adeniji JA. Anti-viral Activity Evaluation of Selected Medicinal Plants of Nigeria against Measles Virus. Microbiol Res J Int. 2015:218–25.
Gbadamosi IT. Stay Safe: Helpful Herbal remedies in COVID-19 infection. Afr J Biomed Res. 2020;23(2):131–133.
Abonyi DO, Abonyi MU, Esimone CO, Ibezim EC. Plants as sources of antiviral agents. Afr J Biotechnol. 2009;8(17):3989–94.
Chukwuma OJT. Antiviral Activities of the Aqueous, Ethanolic and Methanolic Extracts of Diospyros Mespiliformis leaf on some pathogenic Avian viruses. IDOSR J Exp Sci. 2017;2(3):35–49.
Wannang NN, Kwanashie HO, Ede SO. Antiviral activity of the fruit extract of Cucumis metuliferus E. Meye (Curcubitaceae) in chicks. AJBAS 2010;2(3-4): 89–93.
Olugbuyiro J. Inhibitory activity of Detarium microcarpum extract against hepatitis C virus. Afr J Biomed Res. 2009;12(2):149–151.
Moody JO, Robert VA. Hughes Jd-A. Antiviral activities of selected medicinal plants II: Effect of extracts of Diospyros barteri, Diospyros monbutensis and Sphenocentrum jollyanum on Cowpea Mosaic viruses. Pharm Biol. 2002;40(5):342–5.
Arnold H-J, Gulumian M. Pharmacopoeia of traditional medicine in Venda. J Ethnopharmacol. 1984;12(1):35–74. doi: 10.1016/0378-8741(84)90086-2. PubMed DOI
Adeniyi BA, Ayepola OO, Adu FD. The antiviral activity of leaves of Eucalyptus camaldulensis (Dehn) and Eucalyptus torelliana (R. Muell) Pak J Pharm Sci. 2015;28(5):1773–1776. PubMed
Hudson J, Lee M, Rasoanaivo P. Antiviral activities in plants endemic to Madagascar. Pharm Biol. 2000;38(1):36–39. doi: 10.1076/1388-0209(200001)3811-BFT036. PubMed DOI
Malzy P. Quelques plantes du Nord Cameroun et leurs utilisations. Journal d'agriculture traditionnelle et de botanique appliquée. 1954;1(5):148–179. doi: 10.3406/jatba.1954.2147. DOI
Adjanohoun E, Adjakidje V, Ahyi M, Akpagana K, Chibon P, El-Hadji A, Eyme J, Garba M, Gassita J, Gbeassor M, Goudote E, Guinko S, Hodouto K-K, Houngnon, Keita PA, Keoula Y, Kluga -Ocloo WP, Lo I, Siamevi KM, Taffame, KK. In: Contribution aux études ethnobotaniques et floristiques au Togo Agence de coopération culturelle et technique (ACCT), Paris; 1986. p. 671.
Omilabu S. Antiviral Properties of African Medicinal Plants. In: Odugbemi TA, editor. Textbook of Medicinal Plants from Nigeria; 2008.
Ogbole O, Segun P, Akinleye T, Fasinu P. Antiprotozoal, antiviral and cytotoxic properties of the Nigerian Mushroom, Hypoxylon fuscum Pers. Fr.(Xylariaceae). ACTA Pharm Sci. 2018;56(4):43–56.
Esimone C, Omobowajo O, Sowemimo A, Proksch P. Single-cycle vector-based antiviral screening assays for high throughput evaluation of potential anti-HIV medicinal plants: a pilot study on some Nigerian herbs. Recent progress in medicinal plant research. 2007;19:49–60.
Adjanohoun E, Ahyi MRA, Ake-Assi L, Elewude JA, Dramane K, Fadoju SO, Gbile ZO, Goudole E, Johnson CLA, Keita A, Morakinyo O, Ojewole JAO, Olatunji AO, Sofowora EA. Traditional Medicine and Pharmacopoeia. Contribution to Ethnobotanical Floristic Studies in Western Nigeria. Lagos, Nigeria: Organization of African Unity, Scientific Technical and Research Commission; 1991. p. 420.
Oridupa O, Saba A, Sulaiman L. Preliminary report on the antiviral activity of the ethanolic fruit extract of Lagenaria breviflora Roberts on Newcastle disease virus. Trop Vet. 2011;29(1):22–33.
Ogbole OO, Adeniji AJ, Ajaiyeoba EO, Adu FD. Anti-poliovirus activity of medicinal plants selected from the Nigerian ethno-medicine. Afr J Biotechnol. 2013;12(24):3878–83.
Agbo MO, Odimegwu DC, Okoye FBC, Osadebe PO. Antiviral activity of Salidroside from the leaves of Nigerian mistletoe (Loranthus micranthus Linn) parasitic on Hevea brasiliensis against respiratory syncytial virus. Pak J Pharm Sci. 2017;30(4):1251–1256. PubMed
Segun PA, Ogbole OO, Akinleye TE, Faleye TO, Adeniji AJ. In vitro anti-enteroviral activity of stilbenoids isolated from the leaves of Macaranga barteri. Nat Prod Res. 2021;35(11): 1909–13. PubMed
Chollom S, Agada G, Gotep J, Mwankon S, Dus P, Bot Y, Nyango D, Singnap C, Fyaktu E, Okwori A. Investigation of aqueous extract of Moringa oleifera lam seed for antiviral activity against newcastle disease virus in ovo. J Med Plants Res. 2012;6(22):3870–3875. doi: 10.5897/JMPR12.394. DOI
Adjanohoun E, Aké Assi L, Ali A. Contribution aux études ethnobotaniques et floristiques aux Comores. Rapport présenté à l’ACCT; 1982.
Faeji C, Oladunmoye M, Adebayo I, Adebolu T. In-ovo biological activities of Phyllanthus amarus leaf extracts against Newcastle disease virus. J Med Plants Res. 2017;11:419–425. doi: 10.5897/JMPR2017.6379. DOI
Akoegninou A, Adjanohoun E, Adjakidje M, Ahyi L, Ake Assi A, Akoegninou J, d'Almeida F, Apovo K, Boukef M, Chadare G, Gusset K. Contribution aux études ethnobotaniques et floristiques en République Populaire du Bénin. Médecine traditionnelle et pharmacopée Agence de coopération culturelle et technique, (ACCT), Paris; 1989. p. 895.
Chollom S, Agada G, Bot D, Okolo M, Dantong D, Choji T, Echeonwu B, Bigwan E, Lokason S, Banwat E. Phytochemical analysis and antiviral potential of aqueous leaf extract of Psidium guajava against newcastle disease virus in ovo. J Appl Pharm Sci. 2012;2(10):045–049.
Esimone C, Grunwald T, Wildner O, Nchinda G, Tippler B, Proksch P, Ueberla K. In vitro pharmacodynamic evaluation of antiviral medicinal plants using a vector-based assay technique. J Appl Microbiol. 2005;99(6):1346–1355. doi: 10.1111/j.1365-2672.2005.02732.x. PubMed DOI
Esimone C, Grunwald T, Nworu C, Kuate S, Proksch P, Überla K. Broad spectrum antiviral fractions from the lichen Ramalina farinacea (L.) Ach. Chemotherapy. 2009;55(2):119–126. doi: 10.1159/000194974. PubMed DOI
Lai D, Odimegwu DC, Esimone C, Grunwald T, Proksch P. Phenolic compounds with in vitro activity against respiratory syncytial virus from the Nigerian lichen Ramalina farinacea. Planta Med. 2013;79(15):1440–1446. doi: 10.1055/s-0033-1350711. PubMed DOI
Odimegwu DC, Esimone CO. In vitro Antiviral Activity of Nauclea latifolia Root Bark Extract Against the Respiratory Syncytial Virus. European J Med Plants. 2018;22(2):1–7.
Moody J, Roberts V. Antiviral effect of selected medicinal Plants 1: effect of Diospyros bateri, Diospyros monbutensis and Sphenocentrum jollyanum on Polio Viruses. Niger J Nat Prod Med. 2002;6(1):4–6.
Olowokudejo J, Kadiri A, Travih V. An ethnobotanical survey of herbal markets and medicinal plants in Lagos State of Nigeria. Ethnobotanical Leaflets 2008;12:851–65.
Carrière M. Plantes de Guineée à l'usage des éleveurs et des vétérinaires: CIRAD-EMVT; 1994. p. 235.
Vlietinck A, Van Hoof L, Totte J, Lasure A, Berghe DV, Rwangabo P, Mvukiyumwami J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol. 1995;46(1):31–47. doi: 10.1016/0378-8741(95)01226-4. PubMed DOI
Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem. 2021;476(6):2345–64. PubMed PMC
Weng J-K. Plant Solutions for the COVID-19 Pandemic and Beyond: Historical Reflections and Future Perspectives. Mol Plant. 2020;13(6):803–7. PubMed PMC
Iwuoha VC, Ezeibe EN, Ezeibe CC. Glocalization of COVID-19 responses and management of the pandemic in Africa. Local Environ. 2020;25(8):641–7.
Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. Anti-viral potential of garlic (Allium sativum) and it's organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol. 2020;104:219–234. PubMed PMC
World Health Organisation (WHO). Expert panel endorses protocol for COVID-19 herbal medicine clinical trials. 2020. https://www.afro.who.int/news/expert-panel-endorses-protocol-covid-19-herbal-medicine-clinical-trials
ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural Basis of SARS-CoV-2 3CLpro and Anti-COVID-19 Drug Discovery from Medicinal Plants J Pharm Anal. 2020;10(4):313–9. PubMed PMC
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–80. PubMed PMC
Nguyen TTH, Woo H-J, Kang H-K, Kim Y-M, Kim D-W, Ahn S-A, Xia Y, Kim D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett. 2012;34(5):831–838. doi: 10.1007/s10529-011-0845-8. PubMed DOI PMC
Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, Li RS, Tan X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005;67(1):18–23. doi: 10.1016/j.antiviral.2005.02.007. PubMed DOI PMC
Chen H, Du Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints 2020, 2020010358. 10.20944/preprints202001.0358.v3.
De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther. 2006;4(2):291–302. doi: 10.1586/14787210.4.2.291. PubMed DOI PMC
Jo S, Kim S, Shin DH, Kim M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35(1):145–151. doi: 10.1080/14756366.2019.1690480. PubMed DOI PMC
Utomo RY, Meiyanto E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints 2020, 2020030214. 10.20944/preprints202003.0214.v1.
Jeong GU, Song H, Yoon GY, Kim D, Kwon Y-C. Therapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review. Front Microbiol. 2020;11:1723. PubMed PMC
Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytotherapy research : PTR. 2020;34(12):3137–3147. doi: 10.1002/ptr.6781. PubMed DOI PMC
Ziai SA, Heidari MR, Amin Gh, Koochemeshki A, Heidari M. Inhibitory Effects of Germinal Angiotensin Converting Enzyme by Medicinal Plants Used in Iranian Traditional Medicine as Antihypertensive. J Kerman Univ Med Sci. 2009;16(2):134–43.
Shojai TM, Langeroudi AG, Karimi V, Barin A, Sadri N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6(4):458–67. PubMed PMC
Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007;75(3):179–187. doi: 10.1016/j.antiviral.2007.03.003. PubMed DOI PMC
Cheng B, Li T. Discovery of alliin as a putative inhibitor of the main protease of SARS-CoV-2 by molecular docking. Biotechniques. 2020;69(2):108–12. PubMed PMC
Vimalanathan S, Hudson J. Anti-influenza virus activity of essential oils and vapors. American Journal of Essential Oils and Natural Products. 2014;2(1):47–53.
Shin H-B, Choi M-S, Yi C-M, Lee J, Kim N-J, Inn K-S. Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine. Int Immunopharmacol. 2015;27(1):65–68. doi: 10.1016/j.intimp.2015.04.045. PubMed DOI
Fan Y, Zhang Y, Tariq A, Jiang X, Ahamd Z, Zhihao Z, Idrees M, Azizullah A, Adnan M, Bussmann RW. Food as medicine: a possible preventive measure against coronavirus disease (COVID‐19). Phytother Res. 2020;34(12):3124–36. PubMed PMC
Joshi RS, Jagdale SS, Bansode SB, Shankar SS, Tellis MB, Pandya VK, Chugh A, Giri AP, Kulkarni MJ. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J Biomol Struct Dyn. 2021;39(9):3099–114. PubMed PMC
Nallusamy S, Mannu J, Ravikumar C, Angamuthu K, Nathan B, Nachimuthu K, Ramasamy G, Muthurajan R, Subbarayalu M, Neelakandan K. Exploring Phytochemicals of Traditional Medicinal Plants Exhibiting Inhibitory Activity Against Main Protease, Spike Glycoprotein, RNA-dependent RNA Polymerase and Non-Structural Proteins of SARS-CoV-2 Through Virtual Screening. Front Pharmacol. 2021;12:667704. PubMed PMC
Olubiyi OO, Olagunju M, Keutmann M, Loschwitz J, Strodel B. High throughput virtual screening to discover inhibitors of the main protease of the coronavirus SARS-CoV-2. Molecules. 2020;25(14):3193. PubMed PMC
Anand AV, Balamuralikrishnan B, Kaviya M, Bharathi K, Parithathvi A, Arun M, Senthilkumar N, Velayuthaprabhu S, Saradhadevi M, Al-Dhabi NA. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules. 2021;26(6):1775. doi: 10.3390/molecules26061775. PubMed DOI PMC
Roy S, Bhattacharyya P. Possible role of traditional medicinal plant Neem (Azadirachta indica) for the management of COVID-19 infection. Int J Res Pharm Sci. 2020;11(SPL1):122–125. doi: 10.26452/ijrps.v11iSPL1.2256. DOI
Borkotoky S, Banerjee M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J Biomol Struct Dyn. 2021;39(11):4111–21. PubMed PMC
Subramanian SS. Some Compounds from Neem leaves extract exhibit binding affinity as high as -14.3 kcal/mol against COVID-19 Main Protease (Mpro): A Molecular Docking Study. 2020. 10.21203/rs.3.rs-25649/v1.
Maurya VK, Kumar S, Bhatt ML, Saxena SK. Therapeutic Development and Drugs for the Treatment of COVID-19. In: Saxena S, editor. Coronavirus Disease 2019 (COVID-19). Singapore: Springer; 2020. pp. 109–126. https://doi.org/10.1007/978-981-15-4814-7_10
Krokhin O, Li Y, Andonov A, Feldmann H, Flick R, Jones S, Stroeher U, Bastien N, Dasuri KV, Cheng K. Mass spectrometric characterization of proteins from the SARS virus: a preliminary report. Mol Cell Proteomics. 2003;2(5):346–356. doi: 10.1074/mcp.M300048-MCP200. PubMed DOI PMC
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–3. PubMed PMC
Zhong X, Qi G, Yang J, Xing G, Liu J, Yang X. High-efficiency expression of a receptor-binding domain of SARS-CoV spike protein in tobacco chloroplasts. Sheng Wu Gong Cheng Xue Bao= Chin J Biotechnol. 2014;30(6):920–30. PubMed
Zheng N, Xia R, Yang C, Yin B, Li Y, Duan C, Liang L, Guo H, Xie Q. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine. 2009;27(36):5001–5007. doi: 10.1016/j.vaccine.2009.05.073. PubMed DOI PMC
Chang F-R, Yen C-T, Ei-Shazly M, Lin W-H, Yen M-H, Lin K-H, Wu Y-C. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat Prod Commun. 2012;7(11):1415–7. PubMed
Caricchio R, Gallucci M, Dass C, Zhang X, Gallucci S, Fleece D, Bromberg M, Criner GJ. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis. 2021;80:88–95. PubMed
Campbell CM, Guha A, Haque T, Neilan TG, Addison D. Repurposing Immunomodulatory Therapies against Coronavirus Disease 2019 (COVID-19) in the Era of Cardiac Vigilance: A Systematic Review. J Clin Med. 2020;9(9):2935. doi: 10.3390/jcm9092935. PubMed DOI PMC
Boudjeko T, Megnekou R, Woguia AL, Kegne FM, Ngomoyogoli JEK, Tchapoum CDN, Koum O. Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and HE Robins leaves. BMC Res Notes. 2015;8(1):759. PubMed PMC
Ishikawa H, Saeki T, Otani T, Suzuki T, Shimozuma K, Nishino H, Fukuda S, Morimoto K. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J Nutr. 2006;136(3):816S–20S. doi: 10.1093/jn/136.3.816S. PubMed DOI
Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. European Journal of Integrative Medicine. 2019:101011.
Makare N, Bodhankar S, Rangari V. Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice. J Ethnopharmacol. 2001;78(2–3):133–37. PubMed
De L, De T. Protective Foods to Develop Immunity of Individuals against COVID 19. Biotica Research Today. 2020;2(5 Spl.):287–90.
Subhrajyoti C, Sciences IM. Immunomodulatory herbs of Ayurveda and Covid-19: A Review Article. Journal of Ayurveda. 2020;5(2):203–208.
Rahmani AH. Cassia fistula Linn: Potential candidate in the health management. Pharmacognosy Res. 2015;7(3):217. doi: 10.4103/0974-8490.157956. PubMed DOI PMC
Cheng L, Zheng W, Li M, Huang J, Bao S, Xu Q, Ma Z. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Preprints. 2020;2020020313. PubMed PMC
Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh‐Attar MJ. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID‐19. Phytother Res. 2020;34:3137–47. PubMed PMC
Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Accelerated production of hesperidin-rich citrus pectin from waste citrus peel for prevention and therapy of COVID-19. Preprints. 2020. 10.20944/preprints202003.0386.v1.
Liu Y-W, Liu J-C, Huang C-Y, Wang C-K, Shang H-F, Hou W-C. Effects of oral administration of yam tuber storage protein, dioscorin, to BALB/c mice for 21-days on immune responses. J Agric Food Chem. 2009;57(19):9274–9279. doi: 10.1021/jf902245k. PubMed DOI
Fu S-L, Hsu Y-H, Lee P-Y, Hou W-C, Hung L-C, Lin C-H, Chen C-M, Huang Y-J. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages. Biochem Biophys Res Commun. 2006;339(1):137–144. doi: 10.1016/j.bbrc.2005.11.005. PubMed DOI
Wen C-C, Chen H-M, Yang N-S. Chapter 6 - Developing Phytocompounds from Medicinal Plants as Immunomodulators. In: Shyur L-F, Lau ASY, editors. Advances in Botanical Research: Academic Press; 2012. vol. 62, pp. 197–272. PubMed PMC
Muhammad BY, Awaisu A. The need for enhancement of research, development, and commercialization of natural medicinal products in Nigeria: Lessons from the Malaysian experience. Afr J Tradit Complement Altern Med. 2008;5(2):120–30. PubMed PMC
Awodele O, Daniel A, Popoola T, Salami E. A study on pharmacovigilance of herbal medicines in Lagos West Senatorial District. Nigeria Int J Risk Saf Med. 2013;25(4):205–217. doi: 10.3233/JRS-130604. PubMed DOI
World Health Organization. Programme on Traditional Medicine. National policy on traditional medicine and regulation of herbal medicines : report of a WHO global survey. World Health Organization; 2005. https://apps.who.int/iris/handle/10665/43229
Awodele O, Popoola T, Amadi K, Coker H, Akintonwa A. Traditional medicinal plants in Nigeria—Remedies or risks. J Ethnopharmacol. 2013;150(2):614–618. doi: 10.1016/j.jep.2013.09.015. PubMed DOI