Role of casein kinase 1 in the amoeboid migration of B-cell leukemic and lymphoma cells: A quantitative live imaging in the confined environment

. 2022 ; 10 () : 911966. [epub] 20221206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36561363

The migratory properties of leukemic cells are commonly associated with their pathological potential and can significantly affect the disease progression. While the research in immunopathology mostly employed powerful indirect methods such as flow cytometry, these cells were rarely observed directly using live imaging microscopy. This is especially true for the malignant cells of the B-cell lineage, such as those originating from chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). In this study, we employed open-source image analysis tools to automatically and quantitatively describe the amoeboid migration of four B-cell leukemic and lymphoma cell lines and primary CLL cells. To avoid the effect of the shear stress of the medium on these usually non-adherent cells, we have confined the cells using a modified under-agarose assay. Surprisingly, the behavior of tested cell lines differed substantially in terms of basal motility or response to chemokines and VCAM1 stimulation. Since casein kinase 1 (CK1) was reported as a regulator of B-cell migration and a promoter of CLL, we looked at the effects of CK1 inhibition in more detail. Migration analysis revealed that CK1 inhibition induced rapid negative effects on the migratory polarity of these cells, which was quantitatively and morphologically distinct from the effect of ROCK inhibition. We have set up an assay that visualizes endocytic vesicles in the uropod and facilitates morphological analysis. This assay hints that the effect of CK1 inhibition might be connected to defects in polarized intracellular transport. In summary, 1) we introduce and validate a pipeline for the imaging and quantitative assessment of the amoeboid migration of CLL/MCL cells, 2) we provide evidence that the assay is sensitive enough to mechanistically study migration defects identified by the transwell assay, and 3) we describe the polarity defects induced by inhibition or deletion of CK1ε.

Zobrazit více v PubMed

Allen C. D. C., Okada T., Tang H. L., Cyster J. G. (2007). Imaging of germinal center selection events during affinity maturation. Science 315, 528–531. 10.1126/science.1136736 PubMed DOI

Badura L., Swanson T., Adamowicz W., Adams J., Cianfrogna J., Fisher K., et al. (2007). An inhibitor of casein kinase iϵ induces phase delays in circadian rhythms under free-running and entrained conditions. J. Pharmacol. Exp. Ther. 322, 730–738. 10.1124/jpet.107.122846 PubMed DOI

Bardi G., Niggli V., Loetscher P. (2003). Rho kinase is required for CCR7-mediated polarization and chemotaxis of T lymphocytes. FEBS Lett. 542, 79–83. 10.1016/s0014-5793(03)00351-x PubMed DOI

Barna G., Mihalik R., Timar B., Tombol J., Csende Z., Sebestyen A., et al. (2011). ROR1 expression is not a unique marker of CLL. Hematol. Oncol. 29, 17–21. 10.1002/hon.948 PubMed DOI

Baskar S., Kwong K. Y., Hofer T., Levy J. M., Kennedy M. G., Lee E., et al. (2008). Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin. Cancer Res. 14, 396–404. 10.1158/1078-0432.CCR-07-1823 PubMed DOI

Biberfeld P. (1971). Uropod formation in phytohaemagglutinin (PHA) stimulated lymphocytes. Exp. Cell Res. 66, 433–445. 10.1016/0014-4827(71)90698-7 PubMed DOI

Boyden S. (1962). The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466. 10.1084/jem.115.3.453 PubMed DOI PMC

Burger J. A., Burger M., Kipps T. J. (1999). Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94, 3658–3667. 10.1182/blood.v94.11.3658 PubMed DOI

Čada Š., Bryja V. (2021). Local Wnt signalling in the asymmetric migrating vertebrate cells. Semin. Cell Dev. Biol. 125, 26–36. 10.1016/j.semcdb.2021.11.020 PubMed DOI

Carmona-Fontaine C., Matthews H. K., Kuriyama S., Moreno M., Dunn G. A., Parsons M., et al. (2008). Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961. 10.1038/nature07441 PubMed DOI PMC

Carvajal-Gonzalez J. M., Mulero-Navarro S., Mlodzik M. (2016). Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. BioEssays 38, 1234–1245. 10.1002/bies.201600154 PubMed DOI PMC

Choudhury A., Derkow K., Daneshmanesh A. H., Mikaelsson E., Kiaii S., Kokhaei P., et al. (2010). Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br. J. Haematol. 151, 327–335. 10.1111/j.1365-2141.2010.08362.x PubMed DOI

Choudhury A., Dominguez M., Puri V., Sharma D. K., Narita K., Wheatley C. L., et al. (2002). Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J. Clin. 109, 1541–1550. 10.1172/JCI15420 PubMed DOI PMC

Dampmann M., Gorgens A., Mollmann M., Murke F., Duhrsen U., Giebel B., et al. (2020). CpG stimulation of chronic lymphocytic leukemia cells induces a polarized cell shape and promotes migration in vitro and in vivo . PLoS One 15, e0228674. 10.1371/journal.pone.0228674 PubMed DOI PMC

Daneshmanesh A. H., Hojjat-FarsangiM., Khan A. S., Jeddi-TehraniM., Akhondi M. M., Bayat A. A., et al. (2012). Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia 26, 1348–1355. 10.1038/leu.2011.362 PubMed DOI

Deng X., Tu Z., Xiong M., Tembo K., Zhou L., Liu P., et al. (2017). Wnt5a and CCL25 promote adult T-cell acute lymphoblastic leukemia cell migration, invasion and metastasis. Oncotarget 8, 39033–39047. 10.18632/oncotarget.16559 PubMed DOI PMC

Fukuda T., Chen L., Endo T., Tang L., Lu D., Castro J. E., et al. (2008). Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc. Natl. Acad. Sci. U. S. A. 105, 3047–3052. 10.1073/pnas.0712148105 PubMed DOI PMC

García-Muñoz R., Roldan Galiacho V., Llorente L. (2012). Immunological aspects in chronic lymphocytic leukemia (CLL) development. Ann. Hematol. 91, 981–996. 10.1007/s00277-012-1460-z PubMed DOI PMC

Ghosh M. C., Collins G. D., Vandanmagsar B., Patel K., Brill M., Carter A., et al. (2009). Activation of Wnt5A signaling is required for CXC chemokine ligand 12–mediated T-cell migration. Blood 114, 1366–1373. 10.1182/blood-2008-08-175869 PubMed DOI PMC

Gorelik R., Gautreau A. (2014). Quantitative and unbiased analysis of directional persistence in cell migration. Nat. Protoc. 9, 1931–1943. 10.1038/nprot.2014.131 PubMed DOI

Graziani V., Rodriguez-Hernandez I., Maiques O., Sanz-Moreno V. (2022). The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol. 32, 228–242. 10.1016/j.tcb.2021.10.004 PubMed DOI

Härzschel A., Zucchetto A., Gattei V., Hartmann T. N. (2020). VLA-4 expression and activation in B cell malignancies: Functional and clinical aspects. Int. J. Mol. Sci. 21, 2206. 10.3390/ijms21062206 PubMed DOI PMC

Hasan M. K., Rassenti L., Widhopf G. F., Yu J., Kipps T. J. (2019). Wnt5a causes ROR1 to complex and activate cortactin to enhance migration of chronic lymphocytic leukemia cells. Leukemia 33, 653–661. 10.1038/s41375-018-0306-7 PubMed DOI PMC

Hauser A. E., Junt T., Mempel T. R., Sneddon M. W., Kleinstein S. H., Henrickson S. E., et al. (2007). Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26, 655–667. 10.1016/j.immuni.2007.04.008 PubMed DOI

Heasman S. J., Carlin L. M., Cox S., Ng T., Ridley A. J. (2010). Coordinated RhoA signaling at the leading edge and uropod is required for T cell transendothelial migration. J. Cell Biol. 190, 553–563. 10.1083/jcb.201002067 PubMed DOI PMC

Hoellenriegel J., Meadows S. A., Sivina M., Wierda W. G., Kantarjian H., Keating M. J., et al. (2011). The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118, 3603–3612. 10.1182/blood-2011-05-352492 PubMed DOI PMC

Hons M., Kopf A., Hauschild R., Leithner A., Gaertner F., Abe J., et al. (2018). Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nat. Immunol. 19, 606–616. 10.1038/s41590-018-0109-z PubMed DOI

Huang L.-K., Wang M.-J. J. (1995). Image thresholding by minimizing the measures of fuzziness. Pattern Recognit. DAGM. 28, 41–51. 10.1016/0031-3203(94)e0043-k DOI

Hutchinson C. V., Natarajan S., Johnson S. M., Adams J. A., Rees-Unwin K. S., Burthem J. (2014). Lymphocytes from chronic lymphocytic leukaemia undergo ABL1-linked amoeboid motility and homotypic interaction as an early adaptive change to ex vivo culture. Exp. Hematol. Oncol. 3, 7. 10.1186/2162-3619-3-7 PubMed DOI PMC

Jacobelli J., Friedman R. S., Conti M. A., Lennon-Dumenil A. M., Piel M., Sorensen C. M., et al. (2010). Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA–regulated adhesions. Nat. Immunol. 11, 953–961. 10.1038/ni.1936 PubMed DOI PMC

Janovská P., Normant E., Miskin H., Bryja V. (2020). Targeting casein kinase 1 (CK1) in hematological cancers. Int. J. Mol. Sci. 21, 9026. 10.3390/ijms21239026 PubMed DOI PMC

Janovska P., Poppova L., Plevova K., Plesingerova H., Behal M., Kaucka M., et al. (2016). Autocrine signaling by wnt-5a deregulates chemotaxis of leukemic cells and predicts clinical outcome in chronic lymphocytic leukemia. Clin. Cancer Res. 22, 459–469. 10.1158/1078-0432.CCR-15-0154 PubMed DOI PMC

Janovska P., Verner J., Kohoutek J., Bryjova L., Gregorova M., Dzimkova M., et al. (2018). Casein kinase 1 is a therapeutic target in chronic lymphocytic leukemia. Blood 131, 1206–1218. 10.1182/blood-2017-05-786947 PubMed DOI

Jarvis S. C., Snyderman R., Cohen H. J. (1976). Human lymphocyte motility: Normal characteristics and anomalous behavior of chronic lymphocytic leukemia cells. Blood 48, 717–729. 10.1182/blood.v48.5.717.bloodjournal485717 PubMed DOI

Kaucká M., Petersen J., Janovska P., Radaszkiewicz T., Smyckova L., Daulat A. M., et al. (2015). Asymmetry of VANGL2 in migrating lymphocytes as a tool to monitor activity of the mammalian WNT/planar cell polarity pathway. Cell Commun. Signal. 13, 2. 10.1186/s12964-014-0079-1 PubMed DOI PMC

Kaucká M., Plevova K., Pavlova S., Janovska P., Mishra A., Verner J., et al. (2013). The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res. 73, 1491–1501. 10.1158/0008-5472.CAN-12-1752 PubMed DOI

Kenny M., Schoen I. (2021). Violin SuperPlots: Visualizing replicate heterogeneity in large data sets. Mol. Biol. Cell 32, 1333–1334. 10.1091/mbc.E21-03-0130 PubMed DOI PMC

Kim J., Kim D. W., Chang W., Choe J., Park C. S., Song K., et al. (2012). Wnt5a is secreted by follicular dendritic cells to protect germinal center B cells via Wnt/Ca2+/NFAT/NF- B-B cell lymphoma 6 signaling. J. Immunol. 188, 182–189. 10.4049/jimmunol.1102297 PubMed DOI

Kopf A., Renkawitz J., Hauschild R., Girkontaite I., Tedford K., Merrin J., et al. (2020). Microtubules control cellular shape and coherence in amoeboid migrating cells. J. Cell Biol. 219, e201907154. 10.1083/jcb.201907154 PubMed DOI PMC

Kupfer A., Dennert G. (1984). Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J. Immunol. 133, 2762–2766. PubMed

Lai R., McDonnell T. J., O'Connor S. L., Medeiros L. J., Oudat R., KeatingM., et al. (2002). Establishment and characterization of a new mantle cell lymphoma cell line, Mino. Leuk. Res. 26, 849–855. 10.1016/s0145-2126(02)00013-9 PubMed DOI

LaMonica K., Bass M., Grabel L. (2009). The planar cell polarity pathway directs parietal endoderm migration. Dev. Biol. 330, 44–53. 10.1016/j.ydbio.2009.03.008 PubMed DOI PMC

Lee J.-H., Katakai T., Hara T., Gonda H., Sugai M., Shimizu A. (2004). Roles of p-ERM and Rho–ROCK signaling in lymphocyte polarity and uropod formation. J. Cell Biol. 167, 327–337. 10.1083/jcb.200403091 PubMed DOI PMC

Liu Y.-J., Le Berre M., Lautenschlaeger F., Maiuri P., Callan-Jones A., Heuze M., et al. (2015). Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672. 10.1016/j.cell.2015.01.007 PubMed DOI

Lord S. J., Velle K. B., Mullins R. D., Fritz-Laylin L. K. (2020). SuperPlots: Communicating reproducibility and variability in cell biology. J. Cell Biol. 219, e202001064. 10.1083/jcb.202001064 PubMed DOI PMC

Ludford-Menting M. J., Oliaro J., Sacirbegovic F., Cheah E. T. Y., Pedersen N., Thomas S. J., et al. (2005). A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22, 737–748. 10.1016/j.immuni.2005.04.009 PubMed DOI

Ma G., Yasunaga J., Fan J., Yanagawa S., Matsuoka M. (2013). HTLV-1 bZIP factor dysregulates the Wnt pathways to support proliferation and migration of adult T-cell leukemia cells. Oncogene 32, 4222–4230. 10.1038/onc.2012.450 PubMed DOI

Malet-Engra G., Yu W., Oldani A., Rey-Barroso J., Gov N. S., Scita G., et al. (2015). Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion. Curr. Biol. 25, 242–250. 10.1016/j.cub.2014.11.030 PubMed DOI

Mele S., Devereux S., Pepper A. G., Infante E., Ridley A. J. (2018). Calcium-RasGRP2-Rap1 signaling mediates CD38-induced migration of chronic lymphocytic leukemia cells. Blood Adv. 2, 1551–1561. 10.1182/bloodadvances.2017014506 PubMed DOI PMC

Mesin L., Ersching J., Victora G. D. (2016). Germinal center B cell dynamics. Immunity 45, 471–482. 10.1016/j.immuni.2016.09.001 PubMed DOI PMC

Mlynarczyk C., Fontán L., Melnick A. (2019). Germinal center‐derived lymphomas: The darkest side of humoral immunity. Immunol. Rev. 288, 214–239. 10.1111/imr.12755 PubMed DOI PMC

Montresor A., Toffali L., Constantin G., Laudanna C. (2012). Chemokines and the signaling modules regulating integrin affinity. Front. Immunol. 3, 127. 10.3389/fimmu.2012.00127 PubMed DOI PMC

Nakano K., Chihara Y., Kobayashi S., Iwanaga M., Utsunomiya A., Watanabe T., et al. (2021). Overexpression of aberrant Wnt5a and its effect on acquisition of malignant phenotypes in adult T-cell leukemia/lymphoma (ATL) cells. Sci. Rep. 11, 4114. 10.1038/s41598-021-83613-2 PubMed DOI PMC

Nelson R. D., Quie P. G., Simmons R. L. (1975). Chemotaxis under agarose: A new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115, 1650–1656. PubMed

Pavlova S., Smardova J., Tom N., Trbusek M. (2019). Detection and functional analysis of TP53 mutations in CLL. Methods Mol. Biol. 1881, 1881 63–81. 10.1007/978-1-4939-8876-1_6 PubMed DOI

Quintelier K., Couckuyt A., Emmaneel A., Aerts J., Saeys Y., Van Gassen S. (2021). Analyzing high-dimensional cytometry data using FlowSOM. Nat. Protoc. 16, 3775–3801. 10.1038/s41596-021-00550-0 PubMed DOI

Ran F. A., Hsu P. D., Wright J., Agarwala V., Scott D. A., Zhang F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308. 10.1038/nprot.2013.143 PubMed DOI PMC

Ratner S., Sherrod W. S., Lichlyter D. (1997). Microtubule retraction into the uropod and its role in T cell polarization and motility. J. Immunol. 159, 1063–1067. PubMed

Rodriguez-Hernandez I., Maiques O., Kohlhammer L., Cantelli G., Perdrix-Rosell A., Monger J., et al. (2020). WNT11-FZD7-DAAM1 signalling supports tumour initiating abilities and melanoma amoeboid invasion. Nat. Commun. 11, 5315. 10.1038/s41467-020-18951-2 PubMed DOI PMC

Rosén A., Bergh A. C., Gogok P., Evaldsson C., Myhrinder A. L., Hellqvist E., et al. (2012). Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. Oncoimmunology 1, 18–27. 10.4161/onci.1.1.18400 PubMed DOI PMC

Rueden C. T., Ackerman J., Arena E. T., Eglinger J., Cimini B. A., Goodman A., et al. (2019). Scientific community image forum: A discussion forum for scientific image software. PLoS Biol. 17, e3000340. 10.1371/journal.pbio.3000340 PubMed DOI PMC

Samaniego R., Sanchez-Martin L., Estecha A., Sanchez-Mateos P. (2007). Rho/ROCK and myosin II control the polarized distribution of endocytic clathrin structures at the uropod of moving T lymphocytes. J. Cell Sci. 120, 3534–3543. 10.1242/jcs.006296 PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Smith A., Bracke M., Leitinger B., Porter J. C., Hogg N. (2003). LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci. 116, 3123–3133. 10.1242/jcs.00606 PubMed DOI

Stacchini A., Aragno A., Vallario A., Alfarano A., Circosta P., GottarDi D., et al. (1999). MEC1 and MEC2: Two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leuk. Res. 23, 127–136. 10.1016/s0145-2126(98)00154-4 PubMed DOI

Takesono A., Heasman S. J., Wojciak-Stothard B., Garg R., Ridley A. J. (2010). Microtubules regulate migratory polarity through rho/ROCK signaling in T cells. PLoS One 5, e8774. 10.1371/journal.pone.0008774 PubMed DOI PMC

Tinevez J.-Y., Perry N., Schindelin J., Hoopes G. M., Reynolds G. D., Laplantine E., et al. (2017). TrackMate: An open and extensible platform for single-particle tracking. Methods 115, 80–90. 10.1016/j.ymeth.2016.09.016 PubMed DOI

Uehata M., Ishizaki T., Sato H., Ono T., Kawahara T., Morishi T., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994. 10.1038/40187 PubMed DOI

Van Gassen S., Gaudilliere B., Angst M. S., Saeys Y., Aghaeepour N. (2020). CytoNorm: A normalization algorithm for cytometry data. Cytom. A 97, 268–278. 10.1002/cyto.a.23904 PubMed DOI PMC

Wilcke M., Johannes L., Galli T., Mayau V., Goud B., Salamero J. (2000). Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network. J. Cell Biol. 151, 1207–1220. 10.1083/jcb.151.6.1207 PubMed DOI PMC

Yang Y., Mlodzik M. (2015). Wnt-frizzled/Planar cell polarity signaling: Cellular orientation by facing the wind (Wnt). Annu. Rev. Cell Dev. Biol. 31, 623–646. 10.1146/annurev-cellbio-100814-125315 PubMed DOI PMC

Yu J., Chen L., Cui B., Widhopf G. F., Shen Z., Wu R., et al. (2015). Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J. Clin. 126, 585–598. 10.1172/JCI83535 PubMed DOI PMC

Zamò A., Ott G., Katzenberger T., Adam P., Parolini C., Scarpa A., et al. (2006). Establishment of the MAVER-1 cell line, a model for leukemic and aggressive mantle cell lymphoma. Haematologica 91, 40–47. PubMed

Zyss D., Ebrahimi H., Gergely F. (2011). Casein kinase I delta controls centrosome positioning during T cell activation. J. Cell Biol. 195, 781–797. 10.1083/jcb.201106025 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...