The Anatomical and Evolutionary Impact of Pain, Pleasure, Motivation, and Cognition: Integrating Energy Metabolism and the Mind-Body BERN (Behavior, Exercise, Relaxation, and Nutrition) Framework
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40564954
PubMed Central
PMC12193611
DOI
10.3390/ijms26125491
PII: ijms26125491
Knihovny.cz E-zdroje
- Klíčová slova
- BERN, CNS pathways and networks, evolution, hypoxia, mind–body medicine, mitochondria, motivation,
- MeSH
- biologická evoluce MeSH
- bolest * metabolismus patofyziologie MeSH
- cvičení * fyziologie MeSH
- energetický metabolismus * MeSH
- kognice * fyziologie MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- motivace * MeSH
- radost * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In this manuscript, we highlight the evolutionary origins of mitochondria from bacterial endosymbionts and explore their contributions to health, energy metabolism, and neural-immune communication. Mitochondrial adaptability and the roles played by these organelles in promoting oxygen-dependent ATP production provide critical regulation of cognition, motivation, and inflammation. Hypoxia has been identified as an important initiator of inflammation, neurodegeneration, and mitochondrial dysfunction, emphasizing the overall importance of oxygen homeostasis to health and well-being. The Behavior, Exercise, Relaxation, and Nutrition framework highlights these observations as tools that can be used to optimize mitochondrial efficiency. Interestingly, mitochondrial dysfunction may also be linked to psychiatric disorders (e.g., schizophrenia), a hypothesis that focuses on energy dynamics, a proposal that may extend our understanding of these disorders beyond traditional neurotransmitter-focused concepts. Collectively, these perspectives underscore the critical contributions of mitochondria to health and disease and offer a novel framework that may help to explain the connections featured in mind-body medicine.
Zobrazit více v PubMed
Stefano G.B., Kream R.M. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med. Sci. Monit. 2015;21:1478–1484. doi: 10.12659/MSM.894437. PubMed DOI PMC
McCoy T.J., Russell S.S., Zega T.J., Thomas-Keprta K.L., Singerling S.A., Brenker F.E., Timms N.E., Rickard W.D.A., Barnes J.J., Libourel G., et al. An evaporite sequence from ancient brine recorded in Bennu samples. Nature. 2025;637:1072–1077. doi: 10.1038/s41586-024-08495-6. PubMed DOI PMC
Glavin D.P., Dworkin J.P., Alexander C.M.O.D., Aponte J.C., Baczynski A.A., Barnes J.J., Bechtel H.A., Berger E.L., Burton A.S., Caselli P., et al. Abundant ammonia and nitrogen-rich soluble organic matter in samples from asteroid (101955) Bennu. Nat. Astron. 2025;9:199–210. doi: 10.1038/s41550-024-02472-9. PubMed DOI PMC
Marchi S., Guilbaud E., Tait S.W.G., Yamazaki T., Galluzzi L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 2022;23:159–173. doi: 10.1038/s41577-022-00760-x. PubMed DOI PMC
López-Armada M.J., Riveiro-Naveira R.R., Vaamonde-García C., Valcárcel-Ares M.N. Mitochondrial dysfunction and the inflammatory response. Mitochondrion. 2013;13:106–118. doi: 10.1016/j.mito.2013.01.003. PubMed DOI
Van Horssen J., Van Schaik P., Witte M. Inflammation and mitochondrial dysfunction: A vicious circle in neurodegenerative disorders? Neurosci. Lett. 2017;710:132931. doi: 10.1016/j.neulet.2017.06.050. PubMed DOI
Stefano G.B., Esch T., Kream R.M. Behaviorally-mediated entrainment of whole-body metabolic processes: Conservation and evolutionary development of mitochondrial respiratory complexes. Med. Sci. Monit. 2019;25:9306–9309. doi: 10.12659/MSM.920174. PubMed DOI PMC
Stefano G.B., Esch T., Kream R.M. Augmentation of Whole-Body Metabolic Status by Mind-Body Training: Synchronous Integration of Tissue- and Organ-Specific Mitochondrial Function. Med. Sci. Monit. Basic Res. 2019;25:8–14. doi: 10.12659/MSMBR.913264. PubMed DOI PMC
Eltzschig H.K., Carmeliet P. Hypoxia and inflammation. N. Engl. J. Med. 2011;364:656–665. doi: 10.1056/NEJMra0910283. PubMed DOI PMC
Hartmann G., Tschöp M., Fischer R., Bidlingmaier C., Riepl R., Tschöp K., Hautmann H., Endres S., Toepfer M. High Altitude Increases Circulating Interleukin-6, Interleukin-1 Receptor Antagonist and C-Reactive Protein. Cytokine. 2000;12:246–252. doi: 10.1006/cyto.1999.0533. PubMed DOI
Palazon A., Goldrath A.W., Nizet V., Johnson R.S. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41:518–528. doi: 10.1016/j.immuni.2014.09.008. PubMed DOI PMC
Chen I.-T., Huang L.-T., Chen C.-C., Chen C.-M. Molecular mechanisms underlying hyperoxia-induced lung fibrosis. Pediatr. Neonatol. 2022;63:109–116. doi: 10.1016/j.pedneo.2021.11.008. PubMed DOI
Bakare A.B., Lesnefsky E.J., Iyer S. Leigh Syndrome: A tale of two genomes. Front. Physiol. 2021;12:693734. doi: 10.3389/fphys.2021.693734. PubMed DOI PMC
van de Wal M.A.E., Adjobo-Hermans M.J.W., Keijer J., Schirris T.J.J., Homberg J.R., Wieckowski M.R., Grefte S., Van Schothorst E.M., Van Karnebeek C., Quintana A., et al. Ndufs4 knockout mouse models of Leigh syndrome: Pathophysiology and intervention. Brain. 2021;145:45–63. doi: 10.1093/brain/awab426. PubMed DOI PMC
Jain I.H., Zazzeron L., Goli R., Alexa K., Schatzman-Bone S., Dhillon H., Goldberger O., Peng J., Shalem O., Sanjana N.E., et al. Hypoxia as a therapy for mitochondrial disease. Science. 2016;352:54–61. doi: 10.1126/science.aad9642. PubMed DOI PMC
Ferrari M., Jain I.H., Goldberger O., Rezoagli E., Thoonen R., Cheng K.-H., Sosnovik D.E., Scherrer-Crosbie M., Mootha V.K., Zapol W.M. Hypoxia treatment reverses neurodegenerative disease in a mouse model of Leigh syndrome. Proc. Natl. Acad. Sci. USA. 2017;114:E4241–E4250. doi: 10.1073/pnas.1621511114. PubMed DOI PMC
Finsterer J., Zarrouk-Mahjoub S. Psychosis in Leigh syndrome. Asian J. Psychiatry. 2019;41:76–77. doi: 10.1016/j.ajp.2017.04.011. PubMed DOI
Jaballah F., Nouira R.B.S., Mallouli S., Boussaid H., Younes S., Zarrouk L., Younes S. Schizophrenia-Like psychotic symptoms associated to Leigh Syndrome. Case Rep. Psychiatry. 2023;2023:8886555. doi: 10.1155/2023/8886555. PubMed DOI PMC
Stefano G.B., Kream R.M. Primordial biochemicals within coacervate-Like droplets and the origins of life. Viruses. 2025;17:146. doi: 10.3390/v17020146. PubMed DOI PMC
Záhonová K., Treitli S.C., Le T., Škodová-Sveráková I., Hanousková P., Čepička I., Tachezy J., Hampl V. Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biol. 2022;20:56. doi: 10.1186/s12915-022-01247-w. PubMed DOI PMC
Schavemaker P.E., Muñoz-Gómez S.A. The role of mitochondrial energetics in the origin and diversification of eukaryotes. Nat. Ecol. Evol. 2022;6:1307–1317. doi: 10.1038/s41559-022-01833-9. PubMed DOI PMC
Muñoz-Gómez S.A., Susko E., Williamson K., Eme L., Slamovits C.H., Moreira D., López-García P., Roger A.J. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 2022;6:253–262. doi: 10.1038/s41559-021-01638-2. PubMed DOI
Stephens O.R., Grant D., Frimel M., Wanner N., Yin M., Willard B., Erzurum S.C., Asosingh K. Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion. 2020;54:102–112. doi: 10.1016/j.mito.2020.08.002. PubMed DOI PMC
Miliotis S., Nicolalde B., Ortega M., Yepez J., Caicedo A. Forms of extracellular mitochondria and their impact in health. Mitochondrion. 2019;48:16–30. doi: 10.1016/j.mito.2019.02.002. PubMed DOI
Dache Z.A.A., Thierry A.R. Mitochondria-derived cell-to-cell communication. Cell Rep. 2023;42:112728. doi: 10.1016/j.celrep.2023.112728. PubMed DOI
Dache Z.A.A., Otandault A., Tanos R., Pastor B., Meddeb R., Sanchez C., Arena G., Lasorsa L., Bennett A., Grange T., et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020;34:3616–3630. doi: 10.1096/fj.201901917RR. PubMed DOI
Park J.-H., Hayakawa K. Extracellular mitochondria signals in CNS disorders. Front. Cell Dev. Biol. 2021;9:642853. doi: 10.3389/fcell.2021.642853. PubMed DOI PMC
Raval P.K., Garg S.G., Gould S.B. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. eLife. 2022;11:e81033. doi: 10.7554/eLife.81033. PubMed DOI PMC
Mattson M.P., Gleichmann M., Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 2008;60:748–766. doi: 10.1016/j.neuron.2008.10.010. PubMed DOI PMC
Johri A., Beal M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 2012;342:619–630. doi: 10.1124/jpet.112.192138. PubMed DOI PMC
Harris J.J., Jolivet R., Attwell D. Synaptic energy use and supply. Neuron. 2012;75:762–777. doi: 10.1016/j.neuron.2012.08.019. PubMed DOI
Picard M., McEwen B.S., Epel E.S., Sandi C. An energetic view of stress: Focus on mitochondria. Front. Neuroendocrinol. 2018;49:72–85. doi: 10.1016/j.yfrne.2018.01.001. PubMed DOI PMC
Ni P., Ma Y., Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr. Res. 2024;273:62–77. doi: 10.1016/j.schres.2022.08.027. PubMed DOI PMC
Pei L., Wallace D.C. Mitochondrial etiology of Neuropsychiatric disorders. Biol. Psychiatry. 2017;83:722–730. doi: 10.1016/j.biopsych.2017.11.018. PubMed DOI PMC
Wei W., Cheng B., Zhao Y., He D., Chu X., Qin X., Zhang N., Shi S., Cai Q., Hui J., et al. Exploring the Interplay between Mitochondrial DNA and Lifestyle Factors in the Pathogenesis of Psychiatric Disorders. Depress. Anxiety. 2024;2024:4914777. doi: 10.1155/2024/4914777. PubMed DOI PMC
Esch T., Fricchione G.L., Stefano G.B. The therapeutic use of the relaxation response in stress-related diseases. Med. Sci. Monit. 2003;9:RA23–RA34. PubMed
Balban M.Y., Neri E., Kogon M.M., Weed L., Nouriani B., Jo B., Holl G., Zeitzer J.M., Spiegel D., Huberman A.D. Brief structured respiration practices enhance mood and reduce physiological arousal. Cell Rep. Med. 2023;4:100895. doi: 10.1016/j.xcrm.2022.100895. PubMed DOI PMC
Cavanagh M., Cope T., Smith D., Tolley I., Orrock P., Vaughan B. The effectiveness of an osteopathic manual technique compared with a breathing exercise on vagal tone as indicated by heart rate variability, a crossover study. J. Bodyw. Mov. Ther. 2024;38:449–453. doi: 10.1016/j.jbmt.2024.01.003. PubMed DOI
Herawati I., Ludin A.F.M., M M., Ishak I., Farah N.M.F. Breathing exercise for hypertensive patients: A scoping review. Front. Physiol. 2023;14:1048338. doi: 10.3389/fphys.2023.1048338. PubMed DOI PMC
Leknes S., Tracey I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 2008;9:314–320. doi: 10.1038/nrn2333. PubMed DOI
Nicholls D.G., Ferguson S.J. Bioenergetics. 4th ed. University of Oxford; Oxford, UK: 2013. DOI
Cheng A., Hou Y., Mattson M.P. Mitochondria and neuroplasticity. ASN Neuro. 2010;2:e00045. doi: 10.1042/AN20100019. PubMed DOI PMC
Manji H., Kato T., Di Prospero N.A., Ness S., Beal M.F., Krams M., Chen G. Impaired mitochondrial function in psychiatric disorders. Nat. Rev. Neurosci. 2012;13:293–307. doi: 10.1038/nrn3229. PubMed DOI
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and Cancer: A Dawn for Evolutionary Medicine. Annu. Rev. Genet. 2005;39:359–407. doi: 10.1146/annurev.genet.39.110304.095751. PubMed DOI PMC
Lee G.I., Neumeister M.W. Pain: Pathways and Physiology. Clin. Plast. Surg. 2020;47:173–180. doi: 10.1016/j.cps.2019.11.001. PubMed DOI
Geuter S., Reynolds Losin E.A., Roy M., Atlas L.Y., Schmidt L., Krishnan A., Koban L., Wager T.D., Lindquist M.A. Multiple Brain Networks Mediating Stimulus-Pain Relationships in Humans. Cereb. Cortex. 2020;30:4204–4219. doi: 10.1093/cercor/bhaa048. PubMed DOI PMC
Lewis R.G., Florio E., Punzo D., Borrelli E. The Brain’s Reward System in Health and Disease. In: Engmann O., Brancaccio M., editors. Circadian Clock in Brain Health and Disease. Volume 1344. Springer International Publishing; Cham, Switzerland: 2021. pp. 57–69. PubMed PMC
Park H.J., Friston K. Structural and functional brain networks: From connections to cognition. Science. 2013;342:1238411. doi: 10.1126/science.1238411. PubMed DOI
Cohen J.R., D’Esposito M. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition. J. Neurosci. 2016;36:12083–12094. doi: 10.1523/JNEUROSCI.2965-15.2016. PubMed DOI PMC
Baik J.-H. Stress and the dopaminergic reward system. Exp. Mol. Med. 2020;52:1879–1890. doi: 10.1038/s12276-020-00532-4. PubMed DOI PMC
Seeley W.W. Behavioral Variant Frontotemporal Dementia. Continuum. 2019;25:76–100. doi: 10.1212/CON.0000000000000698. PubMed DOI
Lewis R.G., Florio E., Punzo D., Borrelli E. The brain’s reward system in health and disease. Adv. Exp. Med. Biol. 2021;1344:57–69. doi: 10.1007/978-3-030-81147-1_4. PubMed DOI PMC
Horsburgh A., Summers S.J., Lewis A., Keegan R.J., Flood A. The Relationship Between Pain and Interoception: A Systematic Review and Meta-Analysis. J. Pain. 2024;25:104476. doi: 10.1016/j.jpain.2024.01.341. PubMed DOI
Bushnell M.C., Čeko M., Low L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013;14:502–511. doi: 10.1038/nrn3516. PubMed DOI PMC
Kummer K., Sheets P.L. Targeting PFC dysfunction in pain. J. Pharmacol. Exp. Ther. 2024;389:268–276. doi: 10.1124/jpet.123.002046. PubMed DOI PMC
Yun A.J., Lee P.Y., Doux J.D., Conley B.R. A general theory of evolution based on energy efficiency: Its implications for diseases. Med. Hypotheses. 2005;66:664–670. doi: 10.1016/j.mehy.2005.07.002. PubMed DOI
Lynch M. The bioenergetic cost of building a metazoan. Proc. Natl. Acad. Sci. USA. 2024;121:e2414742121. doi: 10.1073/pnas.2414742121. PubMed DOI PMC
Attwell D., Laughlin S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 2001;21:1133–1145. doi: 10.1097/00004647-200110000-00001. PubMed DOI
Magistretti P.J., Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86:883–901. doi: 10.1016/j.neuron.2015.03.035. PubMed DOI
Surmeier D.J., Obeso J.A., Halliday G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 2017;18:101–113. doi: 10.1038/nrn.2016.178. PubMed DOI PMC
Lennie P. The cost of cortical computation. Curr. Biol. 2003;13:493–497. doi: 10.1016/S0960-9822(03)00135-0. PubMed DOI
Erecińska M., Silver I.A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 2001;128:263–276. doi: 10.1016/S0034-5687(01)00306-1. PubMed DOI
Esch T., Stefano G.B., Michaelsen M.M. The foundations of mind-body medicine: Love, good relationships, and happiness modulate stress and promote health. Stress Health. 2024;40:e3387. doi: 10.1002/smi.3387. PubMed DOI
Komaroff A.L. Mind-Body Medicine: A Special Health Report. Harvard Health Publications; Boston, MA, USA: 2001.
Esch T. The Neurobiology of Meditation and Mindfulness. In: Schmidt S., Walach H., editors. Meditation—Neuroscientific Approaches and Philosophical Implications. Studies in Neuroscience, Consciousness and Spirituality. Volume 2. Springer International Publishing; Cham, Switzerland: 2014. pp. 153–173. DOI
Michaelsen M.M., Esch T. Motivation and reward mechanisms in health behavior change processes. Brain Res. 2021;1757:147309. doi: 10.1016/j.brainres.2021.147309. PubMed DOI
Sternberg E.M. Neural regulation of innate immunity: A coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 2006;6:318–328. doi: 10.1038/nri1810. PubMed DOI PMC
Pavlov V.A., Chavan S.S., Tracey K.J. Molecular and functional neuroscience in immunity. Annu. Rev. Immunol. 2018;36:783–812. doi: 10.1146/annurev-immunol-042617-053158. PubMed DOI PMC
Kumar H., Choi D.-K. Hypoxia Inducible factor pathway and physiological adaptation: A cell survival pathway? Mediat. Inflamm. 2015;2015:584758. doi: 10.1155/2015/584758. PubMed DOI PMC
Burtscher J., Hohenauer E., Burtscher M., Millet G.P., Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free. Radic. Biol. Med. 2023;206:63–73. doi: 10.1016/j.freeradbiomed.2023.06.015. PubMed DOI
Esch T., Stefano G.B. The BERN Framework of Mind-Body Medicine: Integrating Self-Care, Health Promotion, Resilience, and Applied Neuroscience. Front. Integr. Neurosci. 2022;16:913573. doi: 10.3389/fnint.2022.913573. PubMed DOI PMC
Esch T. Integrating OpenNotes and Promoting Self-Management in Primary Care in Germany: The Witten Model. The BMJ (Opinion) 2021. [(accessed on 1 June 2025)]. Available online: https://blogs.bmj.com/bmj/2021/04/01/tobias-esch-integrating-opennotes-and-promoting-self-management-in-primary-care-in-germany-the-witten-model.
Esch T. Der Nutzen von Selbstheilungspotenzialen in der professionellen Gesundheitsfürsorge am Beispiel der Mind-Body-Medizin. Bundesgesundheitsblatt–Gesundheitsforschung–Gesundheitsschutz. 2020;63:577–585. doi: 10.1007/s00103-020-03133-8. PubMed DOI
Esch T., Kream R.M., Stefano G.B. Chromosomal processes in mind-body medicine: Chronic stress, cell aging, and telomere length. Med. Sci. Monit. Basic Res. 2018;24:134–140. doi: 10.12659/MSMBR.911786. PubMed DOI PMC
Esch T., Stefano G.B. The neurobiology of stress management. Neuro Endocrinol. Lett. 2010;31:19–39. PubMed
Esch T. Gesund im Stress: Der Wandel des Stresskonzeptes und seine Bedeutung für Prävention, Gesundheit und Lebensstil. Das. Gesundheitswesen. 2002;64:73–81. doi: 10.1055/s-2002-20275. PubMed DOI
Uhl J., Schönfeld S., Meyer L., Reus A., Neumann C., Langer L., Michaelsen M.M., Esch T. (Digital) Mind-Body Intervention to Promote Health and Subjective Well-Being of Residents in Nursing Homes: A Cluster-Randomized Controlled Pilot Study. Das. Gesundheitswesen. 2025 doi: 10.1055/a-2517-8263. PubMed DOI
Kohls N., Esch T., Gerber L., Adrian L., Wittmann M. Mindfulness meditation and fantasy relaxation in a group setting leads to a diminished sense of self and an increased present orientation. Behav. Sci. 2019;9:87. doi: 10.3390/bs9080087. PubMed DOI PMC
Möltner H., Leve J., Esch T. Burnout-Prävention und mobile Achtsamkeit: Evaluation eines appbasierten Gesundheitstrainings bei Berufstätigen. Das. Gesundheitswesen. 2017;57:295–300. doi: 10.1055/s-0043-114004. PubMed DOI
Gimpel C., Von Scheidt C., Jose G., Sonntag U., Stefano G.B., Michalsen A., Esch T. Changes and interactions of flourishing, mindfulness, sense of coherence, and quality of life in patients of a mind-body medicine outpatient clinic. Complement. Med. Res. 2014;21:154–162. doi: 10.1159/000363784. PubMed DOI
Schnieder S., Stappert S., Takahashi M., Fricchione G.L., Esch T., Krajewski J. Sustainable reduction of sleepiness through salutogenic self-care procedure in lunch breaks: A pilot study. Evid.-Based Complement. Altern. Med. 2013;2013:387356. doi: 10.1155/2013/387356. PubMed DOI PMC
Esch T., Jose G., Gimpel C., Von Scheidt C., Michalsen A. Die Flourishing Scale (FS) von Diener et al. liegt jetzt in einer autorisierten deutschen Fassung (FS-D) vor: Einsatz bei einer Mind-Body-medizinischen Fragestellung. Complement. Med. Res. 2013;20:267–275. doi: 10.1159/000354414. PubMed DOI
Esch T., Sonntag U., Esch S.M., Thees S. Stress Management and Mind-Body Medicine: A randomized controlled longitudinal evaluation of students’ health and effects of a behavioral group intervention at a middle-size German university (SM-MESH) Complement. Med. Res. 2013;20:129–137. doi: 10.1159/000350671. PubMed DOI
Feicht T., Wittmann M., Jose G., Mock A., Von Hirschhausen E., Esch T. Evaluation of a Seven-Week Web-Based Happiness Training to Improve Psychological Well-Being, Reduce Stress, and Enhance Mindfulness and Flourishing: A Randomized Controlled Occupational Health Study. Evid.-Based Complement. Altern. Med. 2013;2013:676953. doi: 10.1155/2013/676953. PubMed DOI PMC
Esch T., Duckstein J., Welke J., Braun V. Mind/body techniques for physiological and psychological stress reduction: Stress management via Tai Chi training—A pilot study. Med. Sci. Monit. 2007;13:CR488–CR497. PubMed
Michalsen A., Grossman P., Acil A., Langhorst J., Lüdtke R., Esch T., Stefano G.B., Dobos G.J. Rapid stress reduction and anxiolysis among distressed women as a consequence of a three-month intensive yoga program. Med. Sci. Monit. 2005;11:CR555–CR561. PubMed
Picard M., McEwen B.S. Psychological Stress and Mitochondria: A Systematic Review. Psychosom. Med. 2018;80:141–153. doi: 10.1097/PSY.0000000000000545. PubMed DOI PMC
Chandel N.S. Mitochondria as signaling organelles. BMC Biol. 2014;12:34. doi: 10.1186/1741-7007-12-34. PubMed DOI PMC
Wang X., Zhang G. The mitochondrial integrated stress response: A novel approach to anti-aging and pro-longevity. Ageing Res. Rev. 2025;103:102603. doi: 10.1016/j.arr.2024.102603. PubMed DOI
Zong Y., Li H., Liao P., Chen L., Pan Y., Zheng Y., Zhang C., Liu D., Zheng M., Gao J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024;9:124. doi: 10.1038/s41392-024-01839-8. PubMed DOI PMC
Daniels T.E., Olsen E.M., Tyrka A.R. Stress and Psychiatric Disorders: The role of mitochondria. Annu. Rev. Clin. Psychol. 2020;16:165–186. doi: 10.1146/annurev-clinpsy-082719-104030. PubMed DOI PMC
Andreazza A.C., Shao L., Wang J.-F., Young L.T. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch. Gen. Psychiatry. 2010;67:360–368. doi: 10.1001/archgenpsychiatry.2010.22. PubMed DOI
Scaini G., Mason B.L., Diaz A.P., Jha M.K., Soares J.C., Trivedi M.H., Quevedo J. Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role? Mol. Psychiatry. 2021;27:1095–1102. doi: 10.1038/s41380-021-01312-w. PubMed DOI
Ye J., Duan C., Han J., Chen J., Sun N., Li Y., Yuan T., Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen. Res. 2024;20:1541–1554. doi: 10.4103/NRR.NRR-D-23-01878. PubMed DOI PMC
Roberts R.C. Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion. 2020;56:91–101. doi: 10.1016/j.mito.2020.11.009. PubMed DOI PMC
Nunnari J., Suomalainen A. Mitochondria: In sickness and in health. Cell. 2012;148:1145–1159. doi: 10.1016/j.cell.2012.02.035. PubMed DOI PMC
Kann O., Papageorgiou I.E., Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J. Cereb. Blood Flow Metab. 2014;34:1270–1282. doi: 10.1038/jcbfm.2014.104. PubMed DOI PMC
Sun W., Sun P., Li J., Yang Q., Tian Q., Yuan S., Zhang X., Chen P., Li C., Zhang X. Exploring genetic associations and drug targets for mitochondrial proteins and schizophrenia risk. Schizophrenia. 2025;11:10. doi: 10.1038/s41537-025-00559-4. PubMed DOI PMC
Friston K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010;11:127–138. doi: 10.1038/nrn2787. PubMed DOI
Friston K., Kiebel S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:1211–1221. doi: 10.1098/rstb.2008.0300. PubMed DOI PMC
Barlow H.B. Sensory Communication. MIT Press; Cambridge, MA, USA: 1961. Possible principles underlying the transformation of sensory messages; pp. 217–234.
Rao R.P.N., Ballard D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999;2:79–87. doi: 10.1038/4580. PubMed DOI
Keller G.B., Bonhoeffer T., Hübener M. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron. 2012;74:809–815. doi: 10.1016/j.neuron.2012.03.040. PubMed DOI
Miall R.C., Wolpert D.M. Forward models for physiological motor control. Neural Netw. 1996;9:1265–1279. doi: 10.1016/S0893-6080(96)00035-4. PubMed DOI
Shipp S., Adams R.A., Friston K.J. Reflections on agranular architecture: Predictive coding in the motor cortex. Trends Neurosci. 2013;36:706–716. doi: 10.1016/j.tins.2013.09.004. PubMed DOI PMC
Schultz W., Dayan P., Montague P.R. A neural substrate of prediction and reward. Science. 1997;275:1593–1599. doi: 10.1126/science.275.5306.1593. PubMed DOI
Chanes L., Barrett L.F. Redefining the role of limbic areas in cortical processing. Trends Cogn. Sci. 2015;20:96–106. doi: 10.1016/j.tics.2015.11.005. PubMed DOI PMC
Hoogland M., Ploeger A. Two different mismatches: Integrating the developmental and the Evolutionary-Mismatch hypothesis. Perspect. Psychol. Sci. 2022;17:1737–1745. doi: 10.1177/17456916221078318. PubMed DOI PMC
Bakhtiari S. Energy efficiency as a normative account for predictive coding. Patterns. 2022;3:100661. doi: 10.1016/j.patter.2022.100661. PubMed DOI PMC
Ficco L., Mancuso L., Manuello J., Teneggi A., Liloia D., Duca S., Costa T., Kovacs G.Z., Cauda F. Disentangling predictive processing in the brain: A meta-analytic study in favour of a predictive network. Sci. Rep. 2021;11:16258. doi: 10.1038/s41598-021-95603-5. PubMed DOI PMC
Esch T. The ABC model of happiness-neurobiological aspects of motivation and positive mood, and their dynamic changes through practice, the course of life. Biology. 2022;11:843. doi: 10.3390/biology11060843. PubMed DOI PMC
Mukandala G., Tynan R., Lanigan S., O’Connor J. The effects of hypoxia and inflammation on synaptic signaling in the CNS. Brain Sci. 2016;6:6. doi: 10.3390/brainsci6010006. PubMed DOI PMC
Fiskum V., Sandvig A., Sandvig I. Silencing of Activity During Hypoxia Improves Functional Outcomes in Motor Neuron Networks in vitro. Front. Integr. Neurosci. 2021;15:792863. doi: 10.3389/fnint.2021.792863. PubMed DOI PMC
Hencz A., Magony A., Thomas C., Kovacs K., Szilagyi G., Pal J., Sik A. Mild hypoxia-induced structural and functional changes of the hippocampal network. Front. Cell. Neurosci. 2023;17:1277375. doi: 10.3389/fncel.2023.1277375. PubMed DOI PMC
Bustamante-Barrientos F.A., Luque-Campos N., Araya M.J., Lara-Barba E., De Solminihac J., Pradenas C., Molina L., Herrera-Luna Y., Utreras-Mendoza Y., Elizondo-Vega R., et al. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J. Transl. Med. 2023;21:613. doi: 10.1186/s12967-023-04493-w. PubMed DOI PMC