Augmentation of Whole-Body Metabolic Status by Mind-Body Training: Synchronous Integration of Tissue- and Organ-Specific Mitochondrial Function

. 2019 Jan 11 ; 25 () : 8-14. [epub] 20190111

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30631032

The objective of our concise review is to elaborate an evidence-based integrative medicine model that incorporates functional linkages of key aspects of cortically-driven mind-body training procedures to biochemical and molecular processes driving enhanced cellular bioenergetics and whole-body metabolic advantage. This entails the adoption of a unified biological systems approach to selectively elucidate basic biochemical and molecular events responsible for achieving physiological relaxation of complex cellular structures. We provide accumulated evidence in support of the potential synergy of voluntary breathing exercises in combination with meditation and/or complementary cognitive tasks to promote medically beneficial enhancements in whole-body relaxation, anti-stress mechanisms, and restorative sleep. Accordingly, we propose that the widespread metabolic and physiological advantages emanating from a sustained series of complementary mind-body exercises will ultimately engender enhanced functional integration of cortical and limbic areas controlling voluntary respiratory processes with autonomic brainstem neural pattern generators. Finally, a unified mechanism is proposed that links behaviorally-mediated enhancements of whole-body metabolic advantage to optimization of synchronous regulation of mitochondrial oxygen utilization via recycling of nitrite and nitric oxide by iron-sulfur centers of coupled respiratory complexes and nitrite reductases.

Zobrazit více v PubMed

Wei GX, Si G, Tang YY. Editorial: Brain-mind-body practice and health. Front Psychol. 2017;8:1886. PubMed PMC

Beary JF, Benson H. A simple psychophysiological technique which elicits the hypometabolic changes of the relaxation response. Psychosom Med. 1974;36(2):115–20. PubMed

Benson H. The relaxation response. New York: William Morrow; 1975.

Bhasin MK, Dusek JA, Chang BH, et al. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS One. 2013;8(5):e62817. PubMed PMC

Homma I, Masaoka Y. Breathing rhythms and emotions. Exp Physiol. 2008;93(9):1011–21. PubMed

Smith JC, Abdala AP, Borgmann A, et al. Brainstem respiratory networks: Building blocks and microcircuits. Trends Neurosci. 2013;36(3):152–62. PubMed PMC

Lalley PM, Pilowsky PM, Forster HV, Zuperku EJ. CrossTalk opposing view: The pre-Botzinger complex is not essential for respiratory depression following systemic administration of opioid analgesics. J Physiol. 2014;592(6):1163–66. PubMed PMC

Montandon G, Horner R. CrossTalk proposal: The preBotzinger complex is essential for the respiratory depression following systemic administration of opioid analgesics. J Physiol. 2014;592(6):1159–62. PubMed PMC

Ito J, Roy S, Liu Y, et al. Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration. Nat Commun. 2014;5:3572. PubMed PMC

Lockmann AL, Laplagne DA, Leao RN, Tort AB. A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J Neurosci. 2016;36(19):5338–52. PubMed PMC

Heck DH, McAfee SS, Liu Y, et al. Breathing as a fundamental rhythm of brain function. Front Neural Circuits. 2016;10:115. PubMed PMC

Wu R, Liu Y, Wang L, et al. Activity patterns elicited by airflow in the olfactory bulb and their possible functions. J Neurosci. 2017;37(44):10700–11. PubMed PMC

Piarulli A, Zaccaro A, Laurino M, et al. Ultra-slow mechanical stimulation of olfactory epithelium modulates consciousness by slowing cerebral rhythms in humans. Sci Rep. 2018;8(1):6581. PubMed PMC

Biskamp J, Bartos M, Sauer JF. Organization of prefrontal network activity by respiration-related oscillations. Sci Rep. 2017;7:45508. PubMed PMC

Zhong W, Ciatipis M, Wolfenstetter T, et al. Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci USA. 2017;114(17):4519–24. PubMed PMC

Tort ABL, Ponsel S, Jessberger J, et al. Parallel detection of theta and respiration-coupled oscillations throughout the mouse brain. Sci Rep. 2018;8(1):6432. PubMed PMC

Moberly AH, Schreck M, Bhattarai JP, et al. Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat Commun. 2018;9(1):1528. PubMed PMC

Herrero JL, Khuvis S, Yeagle E, et al. Breathing above the brain stem: Volitional control and attentional modulation in humans. J Neurophysiol. 2018;119(1):145–59. PubMed PMC

Zelano C, Jiang H, Zhou G, et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J Neurosci. 2016;36(49):12448–67. PubMed PMC

Levitt ES, Abdala AP, Paton JF, et al. mu opioid receptor activation hyperpolarizes respiratory-controlling Kolliker-Fuse neurons and suppresses post-inspiratory drive. J Physiol. 2015;593(19):4453–69. PubMed PMC

Abdala AP, Dutschmann M, Bissonnette JM, Paton JF. Correction of respiratory disorders in a mouse model of Rett syndrome. Proc Natl Acad Sci USA. 2010;107(42):18208–13. PubMed PMC

Banzett RB, Adams L, O’Donnell CR, et al. Using laboratory models to test treatment: Morphine reduces dyspnea and hypercapnic ventilatory response. Am J Respir Crit Care Med. 2011;184(8):920–27. PubMed PMC

Horner RL. Emerging principles and neural substrates underlying tonic sleep-state-dependent influences on respiratory motor activity. Philos Trans R Soc Lond B Biol Sci. 2009;364(1529):2553–64. PubMed PMC

Song X, Roy B, Kang DW, et al. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea. Brain Behav. 2018;8(6):e00994. PubMed PMC

Vann NC, Pham FD, Hayes JA, et al. Transient suppression of Dbx1 preBotzinger interneurons disrupts breathing in adult mice. PLoS One. 2016;11(9):e0162418. PubMed PMC

Sheikhbahaei S, Turovsky EA, Hosford PS, et al. Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat Commun. 2018;9(1):370. PubMed PMC

Dick TE, Mims JR, Hsieh YH, et al. Increased cardio-respiratory coupling evoked by slow deep breathing can persist in normal humans. Respir Physiol Neurobiol. 2014;204:99–111. PubMed PMC

Critchley HD, Nicotra A, Chiesa PA, et al. Slow breathing and hypoxic challenge: Cardiorespiratory consequences and their central neural substrates. PLoS One. 2015;10(5):e0127082. PubMed PMC

Kream RM, Stefano GB. Endogenous morphine and nitric oxide coupled regulation of mitochondrial processes. Med Sci Monit. 2009;15(12):RA263–68. PubMed

Stefano GB, Kream RM. Reciprocal regulation of cellular nitric oxide formation by nitric oxide synthase and nitrite reductases. Med Sci Monit. 2011;17(10):RA221–26. PubMed PMC

Stefano GB, Kream RM. Nitric oxide regulation of mitochondrial processes: Commonality in medical disorders. Ann Transplant. 2015;20:402–7. PubMed

Stefano GB, Kream RM. Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective (review) Int J Mol Med. 2016;37:547–55. PubMed PMC

Dusek JA, Chang BH, Zaki J, et al. Association between oxygen consumption and nitric oxide production during the relaxation response. Med Sci Monit. 2006;12(1):CR1–10. PubMed

Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004;84(3):731–65. PubMed

Bates TE, Loesch A, Burnstock G, Clark JB. Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun. 1996;218(1):40–44. PubMed

Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta. 1999;1411(2–3):351–69. PubMed

Shen W, Xu X, Ochoa M, et al. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res. 1994;75(6):1086–95. PubMed

Schweizer M, Richter C. Nitric oxide potently and reversibly deenergizes mitochondria at low oxygen tension. Biochem Biophys Res Comm. 1994;204(1):169–75. PubMed

Takehara Y, Kanno T, Yoshioka T, et al. Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. Arch Biochem Biophys. 1995;323(1):27–32. PubMed

Giulivi C, Kato K, Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumption I: Cellular physiology. Am J Physiol Cell Physiol. 2006;291(6):C1225–31. PubMed

Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide. 2010;22(2):64–74. PubMed PMC

Shiva S, Brookes PS, Patel RP, et al. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome C oxidase. Proc Natl Acad Sci USA. 2001;98(13):7212–17. PubMed PMC

Stefano GB, Mantione KJ, Casares FM, Kream RM. Anaerobically functioning mitochondria: Evolutionary perspective on modulation of energy metabolism in Mytilus edulis. Invertebrate Survival Journal. 2015;12:22–28.

Stefano GB, Kream RM. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med Sci Monit. 2015;21:1478–84. PubMed PMC

Shiva S. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol. 2013;1(1):40–44. PubMed PMC

Salloum FN, Sturz GR, Yin C, et al. Beetroot juice reduces infarct size and improves cardiac function following ischemia-reperfusion injury: possible involvement of endogenous H2S. Exp Biol Med (Maywood) 2015;240(5):669–81. PubMed PMC

Kapil V, Khambata RS, Robertson A, et al. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study. Hypertension. 2015;65(2):320–27. PubMed PMC

A report of the Surgeon General: Smoking and health. US Government Printing Office; 1979.

Stefano GB, Kream RM. Alkaloids, nitric oxide, and nitrite reductases: Evolutionary coupling as key regulators of cellular bioenergetics with special relevance to the human microbiome. Med Sci Monit. 2018;24:3153–58. PubMed PMC

Djeungoue-Petga MA, Hebert-Chatelain E. Linking mitochondria and synaptic transmission: The CB1 receptor. Bioessays. 2017;39(12) PubMed

Pozdniakova S, Guitart-Mampel M, Garrabou G, et al. 17beta-estradiol reduces mitochondrial cAMP content and cytochrome oxidase activity in a phosphodiesterase 2-dependent manner. Br J Pharmacol. 2018;175(20):3876–90. PubMed PMC

Stefano GB, Cadet P, Breton C, et al. Estradiol-stimulated nitric oxide release in human granulocytes is dependent on intracellular calcium transients: Evidence for a cell surface estrogen receptor. Blood. 2000;95(12):3951–58. PubMed

Stefano GB, Prevot V, Beauvillain JC, et al. Acute exposure of estrogen to human endothelia results in nitric oxide release mediated by an estrogen surface receptor coupled to intracellular calcium transients. Circulation. 2000;101:1594–97. PubMed

Stefano GB, Mantione KJ, Capellan L, et al. Morphine stimulates nitric oxide release in human mitochondria. J Bioenerg Biomembr. 2015;47(5):409–17. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...