Dysregulation of Nitric Oxide Signaling in Microglia: Multiple Points of Functional Convergence in the Complex Pathophysiology of Alzheimer Disease
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu úvodníky
PubMed
32975239
PubMed Central
PMC7523423
DOI
10.12659/msm.927739
PII: 927739
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc * metabolismus patologie patofyziologie MeSH
- lidé MeSH
- mikroglie * metabolismus patologie MeSH
- oxid dusnatý metabolismus MeSH
- signální transdukce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodníky MeSH
- Názvy látek
- oxid dusnatý MeSH
Current critical thinking has displaced the elaborated beta amyloid theory as the underlying unitary mechanism of Alzheimer disease (AD) in favor of concerted, long-term disruption or dysregulation of broad-based physiological processes. We present a critical discussion in which a chronic state of systemic proinflammation sustained over the course of several decades and engendered by ongoing metabolic or autoimmune disease is predicted to promote severe disruptions of central neurological processes. Specifically, long-term functional rundown of microglial-mediated phagocytic activity in concert with aberrant expression and cellular deposition of beta amyloid and tau protein facilitates formation of senile plaques and neurofibrillary tangles. Within this functional context, we hypothesize that early initiation events in the pathophysiology of AD may operationally involve a convergence of dysregulated peripheral and central constitutive nitric oxide signaling pathways resulting from a chronic state of systemic proinflammation and leading to severely dysfunctional "hyperactivated" microglia.
Zobrazit více v PubMed
Scheiblich H, Bicker G. Nitric oxide regulates antagonistically phagocytic and neurite outgrowth inhibiting capacities of microglia. Dev Neurobiol. 2016;76(5):566–84. PubMed
Wolfe CM, Fitz NF, Nam KN, et al. The role of APOE and TREM2 in Alzheimer’s disease – current understanding and perspectives. Int J Mol Sci. 2018;20(1):81. PubMed PMC
Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front Aging Neurosci. 2019;11:14. PubMed PMC
Nott A, Holtman IR, Coufal NG, et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science. 2019;366(6469):1134–39. PubMed PMC
Yanuck SF. Microglial phagocytosis of neurons: Diminishing neuronal loss in traumatic, infectious, inflammatory, and autoimmune CNS disorders. Front Psychiatry. 2019;10:712. PubMed PMC
Stefano GB, Bilfinger TV, Fricchione GL. The immune neuro-link and the macrophage: Postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog Neurobiol. 1994;42:475–88. PubMed
Esch T, Stefano GB. Proinflammation: A common denominator or initiator of different pathophysiological disease processes. Med Sci Monit. 2002;8(5):HY1–9. PubMed
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer’s disease originate in the periphery and if so how so? Mol Neurobiol. 2019;56(1):406–34. PubMed PMC
Gustin A, Kirchmeyer M, Koncina E, et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One. 2015;10(6):e0130624. PubMed PMC
Stefano GB, Goumon Y, Bilfinger TV, et al. Basal nitric oxide limits immune, nervous and cardiovascular excitation: Human endothelia express a mu opiate receptor. Prog Neurobiol. 2000;60(6):513–30. PubMed
Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109–42. PubMed
Stefano GB, Kream RM. Alkaloids, nitric oxide, and nitrite reductases: Evolutionary coupling as key regulators of cellular bioenergetics with special relevance to the human microbiome. Med Sci Monit. 2018;24:3153–58. PubMed PMC
de la Torre JC, Stefano GB. Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Brain Res Rev. 2000;34:119–36. PubMed
Katusic ZS, Austin SA. Endothelial nitric oxide: Protector of a healthy mind. Eur Heart J. 2014;35(14):888–94. PubMed PMC
Sonetti D, Ottaviani E, Bianchi F, et al. Microglia in invertebrate ganglia. Proc Natl Acad Sci USA. 1994;91:9180–84. PubMed PMC
Magazine HI, Liu Y, Bilfinger TV, et al. Morphine-induced conformational changes in human monocytes,granulocytes, and endothelial cells and in invertebrate immunocytes and microglia are mediated by nitric oxide. J Immunol. 1996;156:4845–50. PubMed
Sonetti D, Ottaviani E, Stefano GB. Opiate signaling regulates microglia activities in the invertebrate nervous system. Gen Pharmacol. 1997;29(1):39–47. PubMed
Stefano GB, Kim E, Liu Y, et al. Nitric oxide modulates microglial activation. Med Sci Monit. 2004;10(2):BR17–22. PubMed
de la Torre JC. Cerebromicrovascular pathology in Alzheimer’s disease compared to normal aging. Gerontology. 1997;43(1–2):26–43. PubMed
de la Torre JC. Hemodynamic consequences of deformed microvessels in the brain in Alzheimer’s disease. Ann NY Acad Sci. 1997;826:75–91. PubMed
Stefano GB, Esch T, Kream RM. Behaviorally-mediated entrainment of whole-body metabolic processes: Conservation and evolutionary development of mitochondrial respiratory complexes. Med Sci Monit. 2019;25:9306–9. PubMed PMC
Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs. other neurodegenerative disorders. JAMA. 2020 [Online ahead of print] PubMed PMC
Stefano GB, Esch T, Kream RM. Augmentation of whole-body metabolic status by mind-body training: synchronous integration of tissue- and organ-specific mitochondrial function. Med Sci Monitor Basic Res. 2019;25:8–14. PubMed PMC
Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior
Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19