The neurobiology of love and addiction: Central nervous system signaling and energy metabolism

. 2025 Aug 04 ; () : . [epub] 20250804

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40760398
Odkazy

PubMed 40760398
DOI 10.3758/s13415-025-01333-w
PII: 10.3758/s13415-025-01333-w
Knihovny.cz E-zdroje

Despite our ongoing fascination with love's pleasures and pain, psychologists and neurobiologists have only recently begun to explore the neurobiological connections shared by feelings of romantic love and the experience of drug addiction. Functional imaging studies have revealed that feelings resulting from romantic love and those resulting from active drug use both activate the central reward system, which is a series of forebrain and midbrain structures that transmit signals primarily via dopamine release. Similarly, the relaxation response, which is a series of behaviors designed to alleviate stress-related physiologic sequelae, may also be helpful as an adjunct therapy for drug withdrawal. The benefits of the relaxation response and related mind-body practices may stem directly from its impact on mitochondria, organelles that are central to balanced energy production. Nitric oxide (NO) is a central neurotransmitter and also a key regulatory molecule that modulates mitochondrial respiration and oxygen utilization. Thus, we propose that observed behaviorally mediated changes that emerge from engaging the relaxation response may be the result of NO-mediated improvements in mitochondrial bioenergetics. Future research might focus on elucidating the important links between cellular bioenergetics, the relaxation response, and the central reward system and might explore NO modulation as a potentially effective target for drug development.

Zobrazit více v PubMed

Acevedo, B. P., Aron, A., Fisher, H. E., & Brown, L. L. (2012). Neural correlates of long-term intense romantic love. Social Cognitive and Affective Neuroscience, 7(2), 145–159. https://doi.org/10.1093/scan/nsq092 DOI

Acevedo, B. P., Poulin, M. J., Collins, N. L., & Brown, L. L. (2020). After the honeymoon: Neural and genetic correlates of romantic love in newlywed marriages. Frontiers in Psychology, 11, 634. https://doi.org/10.3389/fpsyg.2020.00634 DOI

Adams, M. L., Kalicki, J. M., Meyer, E. R., & Cicero, T. J. (1993). Inhibition of the morphine withdrawal syndrome by a nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester. Life Sciences, 52(24), PL245–PL249. https://doi.org/10.1016/0024-3205(93)90472-f DOI

American Psychological Association. (2018). Romantic love. In APA Dictionary of Psychology. https://dictionary.apa.org/romantic-love

American Psychological Association. (2018). Addiction. In APA Dictionary of Psychology. https://dictionary.apa.org/addiction

American Society of Addiction Medicine. (2019). Definition of addiction. https://www.asam.org/quality-care/definition-of-addiction

Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94(1), 327–337. https://doi.org/10.1152/jn.00838.2004 DOI

Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21(10), 1133–1145. https://doi.org/10.1097/00004647-200110000-00001 DOI

Beary, J. F., Benson, H., & Klemchuk, H. P. (1974). A simple psychophysiologic technique which elicits the hypometabolic changes of the relaxation response. Psychosomatic Medicine, 36(2), 115–120. https://doi.org/10.1097/00006842-197403000-00003 DOI

Benson, H., Greenwood, M. M., & Klemchuk, H. (1975). The relaxation response: Psychophysiologic aspects and clinical applications. The International Journal of Psychiatry in Medicine, 6(1–2), 87–98. https://doi.org/10.2190/376W-E4MT-QM6Q-H0UM DOI

Bhasin, M. K., Denninger, J. W., Huffman, J. C., Joseph, M. G., Niles, H., Chad-Friedman, E., Goldman, R., Buczynski-Kelley, B., Mahoney, B. A., Fricchione, G. L., Dusek, J. A., Benson, H., Zusman, R. M., & Libermann, T. A. (2018). Specific transcriptome changes associated with blood pressure reduction in hypertensive patients after relaxation response training. The Journal of Alternative and Complementary Medicine, 24(5), 486–504. https://doi.org/10.1089/acm.2017.0053 DOI

Bhasin, M. K., Dusek, J. A., Chang, B.-H., Joseph, M. G., Denninger, J. W., Fricchione, G. L., Benson, H., & Libermann, T. A. (2013). Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS One, 8(5), Article e62817. https://doi.org/10.1371/journal.pone.0062817 DOI

Bressan, P., & Kramer, P. (2021). Mental health, mitochondria, and the battle of the sexes. Biomedicines, 9(2), 116. https://doi.org/10.3390/biomedicines9020116 DOI

Black, D. S., & Slavich, G. M. (2016). Mindfulness meditation and the immune system: A systematic review of randomized controlled trials. Annals of the New York Academy of Sciences, 1373(1), 13–24. https://doi.org/10.1111/nyas.12998 DOI

Brown, G. C., & Cooper, C. (1994). Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Letters, 356(2–3), 295–298. https://doi.org/10.1016/0014-5793(94)01290-3 DOI

Brown, R. P., & Gerbarg, P. L. (2005). Sudarshan kriya yogic breathing in the treatment of stress, anxiety, and depression: Part II—clinical applications and guidelines. The Journal of Alternative and Complementary Medicine, 11(4), 711–717. https://doi.org/10.1089/acm.2005.11.711 DOI

Burkett, J. P., Spiegel, L. L., Inoue, K., Murphy, A. Z., & Young, L. J. (2011). Activation of μ-opioid receptors in the dorsal striatum is necessary for adult social attachment in monogamous prairie voles. Neuropsychopharmacology, 36(11), 2200–2210. https://doi.org/10.1038/npp.2011.117 DOI

Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745 DOI

Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. A., & Stella, A. M. G. (2007). Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nature Reviews. Neuroscience, 8(10), 766–775. https://doi.org/10.1038/nrn2214 DOI

Carlsson, A. (2000). A half-century of neurotransmitter research: Impact on neurology and psychiatry [Nobel lecture]. NobelPrize.org. https://www.nobelprize.org/prizes/medicine/2000/carlsson/lecture/ (Last accessed January 6, 2025)

Carter, C. S. (2017). The oxytocin–vasopressin pathway in the context of love and fear. Frontiers in Endocrinology, 8, Article 356. https://doi.org/10.3389/fendo.2017.00356

Crews, F. T., Zou, J., & Qin, L. (2011). Induction of innate immune genes in brain create the neurobiology of addiction. Brain, Behavior, and Immunity, 25(Suppl. 1), S4–S12. https://doi.org/10.1016/j.bbi.2011.03.003 DOI

Cunha-Oliveira, T., Rego, A. C., & Oliveira, C. R. (2008). Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Research Reviews, 58(1), 192–208. https://doi.org/10.1016/j.brainresrev.2008.03.002 DOI

Dhaliwal, A., & Gupta, M. (2023). Physiology, opioid receptor. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK546642/ (last accessed January 6, 2025)

Dromparis, P., & Michelakis, E. D. (2012). Mitochondria in vascular health and disease. Annual Review of Physiology, 75(1), 95–126. https://doi.org/10.1146/annurev-physiol-030212-183804 DOI

Dusek, J. A., Chang, B. H., Zaki, J., Lazar, S., Deykin, A., Stefano, G. B., Wohlhueter, A. L., Hibberd, P. L., & Benson, H. (2006). Association between oxygen consumption and nitric oxide production during the relaxation response. Medical Science Monitor, 12, CR1–CR10.

Epstein, F. H., Moncada, S., & Higgs, A. (1993). The L-arginine-nitric oxide pathway. New England Journal of Medicine, 329(27), 2002–2012. https://doi.org/10.1056/nejm199312303292706 DOI

Esch, T., & Stefano, G. B. (2004). The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinology Letters, 25(4), 235–251.

Esch, T., & Stefano, G. B. (2005). The neurobiology of love. Neuroendocrinology Letters, 26(3), 175–192.

Esch, T., & Stefano, G. B. (2005). Love promotes health. Neuroendocrinology Letters, 26(3), 264–267.

Esch, T., & Stefano, G. B. (2010). Endogenous reward mechanisms and their importance in stress reduction, exercise and the brain. Archives of Medical Science, 6(3), 447–455. https://doi.org/10.5114/aoms.2010.14269 DOI

Esch, T. (2014). The neurobiology of meditation and mindfulness. In S. Schmidt spsampsps H. Walach (Eds.), Meditation – Neuroscientific approaches and philosophical implications (Vol. 2, pp. 153–173). Springer. https://doi.org/10.1007/978-3-319-01634-4_9

Esch, T., Kream, R. M., & Stefano, G. B. (2020). Emerging regulatory roles of opioid peptides, endogenous morphine, and opioid receptor subtypes in immunomodulatory processes: Metabolic, behavioral, and evolutionary perspectives. Immunology Letters, 227, 28–33. https://doi.org/10.1016/j.imlet.2020.08.007 DOI

Esch, T., Stefano, G. B., & Michaelsen, M. M. (2024). The foundations of mind-body medicine: Love, good relationships, and happiness modulate stress and promote health. Stress and Health, 40(1), Article e3387. https://doi.org/10.1002/smi.3387 DOI

Fisher, H., Aron, A., & Brown, L. L. (2005). Romantic love: An fMRI study of a neural mechanism for mate choice. The Journal of Comparative Neurology, 493(1), 58–62. https://doi.org/10.1002/cne.20772 DOI

Fisher, H. E., Xu, X., Aron, A., & Brown, L. L. (2016). Intense, passionate, romantic love: A natural addiction? How the fields that investigate romance and substance abuse can inform each other. Frontiers in Psychology, 7, 687. https://doi.org/10.3389/fpsyg.2016.00687 DOI

Foerster, K., & Kanske, P. (2022). Upregulating positive affect through compassion: Psychological and physiological evidence. International Journal of Psychophysiology, 176, 100–107. https://doi.org/10.1016/j.ijpsycho.2022.03.009 DOI

Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480. https://doi.org/10.1016/j.tics.2005.08.011 DOI

Fu, Z. X., Tan, X., Fang, H., Lau, P. M., Wang, X., Cheng, H., & Bi, G. Q. (2017). Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity. Nature Communications, 8(1), 31. https://doi.org/10.1038/s41467-017-00043-3 DOI

Furlan, A., & Petrus, P. (2023). Brain–body communication in metabolic control. Trends in Endocrinology and Metabolism, 34(12), 813–822. https://doi.org/10.1016/j.tem.2023.08.014 DOI

Garner, M., Reith, W., & Krick, C. (2019). 10-week Hatha yoga increases right hippocampal density compared to active and passive control groups: A controlled structural cMRI study. Journal of Neuroimaging in Psychiatry and Neurology, Article Article 027. https://doi.org/10.17756/jnpn.2019-027 DOI

Gautam, S., Saxena, R., Dada, T., & Dada, R. (2021). Yoga—impact on mitochondrial health: Clinical consequences. Annals of Neurosciences, 28(3–4), 114–116. https://doi.org/10.1177/09727531211009431 DOI

Gautam, S., Kumar, U., Kumar, M., Rana, D., & Dada, R. (2021). Yoga improves mitochondrial health and reduces severity of autoimmune inflammatory arthritis: A randomized controlled trial. Mitochondrion, 58, 147–159. https://doi.org/10.1016/j.mito.2021.03.004 DOI

Gothe, N. P., Khan, I., Hayes, J., et al. (2019). Yoga effects on brain health: A systematic review of the current literature. Brain Plasticity, 5(1), 105–122. https://doi.org/10.3233/bpl-190084 DOI

Gowri, M. M., Rajendran, J., Srinivasan, A., Bhavanani, A. B., & Meena, R. (2022). Impact of an integrated yoga therapy protocol on insulin resistance and glycemic control in patients with type 2 diabetes mellitus. Rambam Maimonides Medical Journal, 13(1), Article e0005. https://doi.org/10.5041/rmmj.10462 DOI

Hemish, J., Nakaya, N., Mittal, V., & Enikolopov, G. (2003). Nitric oxide activates diverse signaling pathways to regulate gene expression. Journal of Biological Chemistry, 278(42), 42321–42329. https://doi.org/10.1074/jbc.m308192200 DOI

Hervera, A., Negrete, R., Leánez, S., et al. (2011). Peripheral effects of morphine and expression of μ-opioid receptors in the dorsal root ganglia during neuropathic pain: Nitric oxide signaling. Molecular Pain, 7, 25. https://doi.org/10.1186/1744-8069-7-25 DOI

Insel, T. R. (2010). The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65(6), 768–779. https://doi.org/10.1016/j.neuron.2010.03.005 DOI

Itzhak, Y., Martin, J. L., & Ali, S. F. (2000). Comparison between the role of the neuronal and inducible nitric oxide synthase in methamphetamine-induced neurotoxicity and sensitization. Annals of the New York Academy of Sciences, 914(1), 104–111. https://doi.org/10.1111/j.1749-6632.2000.tb05188.x DOI

Iversen, S. D., & Iversen, L. L. (2007). Dopamine: 50 years in perspective. Trends in Neurosciences, 30, 188–193. https://doi.org/10.1016/j.tins.2007.03.002 DOI

Kalamarides, D. J., Singh, A., & Dani, J. A. (2024). Protracted opioid withdrawal behaviors are reduced by nitric oxide inhibition in mice. Addiction Neuroscience, 12, Article 100167. https://doi.org/10.1016/j.addicn.2024.100167 DOI

Kann, O., Papageorgiou, I. E., & Draguhn, A. (2014). Highly energized inhibitory interneurons are a central element for information processing in cortical networks. Journal of Cerebral Blood Flow & Metabolism, 34(8), 1270–1282. https://doi.org/10.1038/jcbfm.2014.104 DOI

Karrasch, S., Mavioğlu, R. N., Matits, L., et al. (2023). Randomized controlled trial investigating potential effects of relaxation on mitochondrial function in immune cells: A pilot experiment. Biological Psychology, 183, Article 108656. https://doi.org/10.1016/j.biopsycho.2023.108656 DOI

Kemper, K. J., Powell, D., Helms, C. C., & Kim-Shapiro, D. B. (2014). Loving-kindness meditation’s effects on nitric oxide and perceived well-being: A pilot study in experienced and inexperienced meditators. Explore, 11(1), 32–39. https://doi.org/10.1016/j.explore.2014.10.002 DOI

Kimes, A. S., Vaupel, D. B., & London, E. D. (1993). Attenuation of some signs of opioid withdrawal by inhibitors of nitric oxide synthase. Psychopharmacology, 112(4), 521–524. https://doi.org/10.1007/bf02244904 DOI

Klajner, F., Hartman, L. M., & Sobell, M. B. (1984). Treatment of substance abuse by relaxation training: A review of its rationale, efficacy and mechanisms. Addictive Behaviors, 9(1), 41–55. https://doi.org/10.1016/0306-4603(84)90006-6 DOI

Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. The Lancet Psychiatry, 3(8), 760–773. https://doi.org/10.1016/s2215-0366(16)00104-8 DOI

Kream, R. M., & Stefano, G. B. (2009). Endogenous morphine and nitric oxide coupled regulation of mitochondrial processes. Medical Science Monitor, 15(5), RA263–RA268.

Kross, E., Berman, M. G., Mischel, W., et al. (2011). Social rejection shares somatosensory representations with physical pain. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6270–6275. https://doi.org/10.1073/pnas.1102693108 DOI

Lee, M. R., Scheidweiler, K. B., Diao, X. X., Akhlaghi, F., Cummins, A., Huestis, M. A., Leggio, L., & Averbeck, B. B. (2018). Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: Determination using a novel oxytocin assay. Molecular Psychiatry, 23(1), 115–122. https://doi.org/10.1038/mp.2017.27 DOI

Le Merrer, J., Becker, J. A. J., Befort, K., & Kieffer, B. L. (2009). Reward processing by the opioid system in the brain. Physiological Reviews, 89(4), 1379–1412. https://doi.org/10.1152/physrev.00005.2009 DOI

Lewis, R. G., Florio, E., Punzo, D., spsampsps Borrelli, E. (2021). The brain’s reward system in health and disease. In Advances in Experimental Medicine and Biology (Vol. 1344, pp. 57–69). Springer. https://doi.org/10.1007/978-3-030-81147-1_4

Leza, J. C., Lizasoain, I., Cuellar, B., et al. (1996). Correlation between brain nitric oxide synthase activity and opiate withdrawal. Naunyn-Schmiedeberg’s Archives of Pharmacology, 353(3), 349–354. https://doi.org/10.1007/bf00168639 DOI

Lotfinia, S., Yaseri, A., Jamshidmofid, P., et al. (2024). Effect of relaxation-based virtual reality on psychological and physiological stress of substance abusers under detoxification: A randomized controlled trial. Brain and Behavior, 14, Article e70084. https://doi.org/10.1002/brb3.70084 DOI

Maechler, P., & Wollheim, C. B. (2001). Mitochondrial function in normal and diabetic β-cells. Nature, 414(6865), 807–812. https://doi.org/10.1038/414807a DOI

Majeed, N. H., Przewłocka, B., Machelska, H., & Przewłocki, R. (1994). Inhibition of nitric oxide synthase attenuates the development of morphine tolerance and dependence in mice. Neuropharmacology, 33(2), 189–192. https://doi.org/10.1016/0028-3908(94)90006-x DOI

Mantione, K. J., Esch, T., & Stefano, G. B. (2007). Detection of nitric oxide in exhaled human breath: Exercise and resting determinations. Medical Science Monitor, 13(1), MT1–MT5.

Marazziti, D., Palermo, S., spsampsps Mucci, F. (2021). The science of love: State of the art. In Advances in Experimental Medicine and Biology (Vol. 1331, pp. 249–254). Springer. https://doi.org/10.1007/978-3-030-74046-7_16

Mastronicola, D., Arcuri, E., Arese, M., et al. (2004). Morphine but not fentanyl and methadone affects mitochondrial membrane potential by inducing nitric oxide release in glioma cells. Cellular and Molecular Life Sciences, 61, 2991–2997. https://doi.org/10.1007/s00018-004-4371-x DOI

Murnane, K. S., Edinoff, A. N., Cornett, E. M., & Kaye, A. D. (2023). Updated perspectives on the neurobiology of substance use disorders using neuroimaging. Substance Abuse and Rehabilitation, 14, 99–111. https://doi.org/10.2147/sar.s362861 DOI

Murray, D. R., Haselton, M. G., Fales, M., & Cole, S. W. (2018). Falling in love is associated with immune system gene regulation. Psychoneuroendocrinology, 100, 120–126. https://doi.org/10.1016/j.psyneuen.2018.09.043 DOI

Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells. FASEB Journal, 6(12), 3051–3064.

National Institute on Drug Abuse. (2007). The neurobiology of drug addiction. https://nida.nih.gov/sites/default/files/1922-the-neurobiology-of-drug-addiction.pdf

Nestler, E. J. (2001). Molecular basis of long-term plasticity underlying addiction. Nature Reviews Neuroscience, 2(2), 119–128. https://doi.org/10.1038/35053570 DOI

Nestler, E. J. (2012). Transcriptional mechanisms of drug addiction. Clinical Psychopharmacology and Neuroscience, 10(3), 136–143. https://doi.org/10.9758/cpn.2012.10.3.136 DOI

Olds, J., & Schwartz, R. S. (2023). Why don’t you take this to a friend? A question psychotherapists should ask more often. Harvard Review of Psychiatry, 31(1), 47–49. https://doi.org/10.1097/HRP.0000000000000359 DOI

Peele, S., & Brodsky, A. (1975). Love and addiction. Taplinger Publishing.

Peris, J., MacFadyen, K., Smith, J. A., et al. (2016). Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. The Journal of Comparative Neurology, 525(5), 1094–1108. https://doi.org/10.1002/cne.24116 DOI

Picard, M., McEwen, B. S., Epel, E. S., & Sandi, C. (2018). An energetic view of stress: Focus on mitochondria. Frontiers in Neuroendocrinology, 49, 72–85. https://doi.org/10.1016/j.yfrne.2018.01.001 DOI

Priest, C., & Tontonoz, P. (2019). Inter-organ cross-talk in metabolic syndrome. Nature Metabolism, 1(12), 1177–1188. https://doi.org/10.1038/s42255-019-0145-5J DOI

Radfar, A., Abohashem, S., Osborne, M. T., et al. (2021). Stress-associated neurobiological activity associates with the risk for and timing of subsequent Takotsubo syndrome. European Heart Journal, 42(19), 1898–1908. https://doi.org/10.1093/eurheartj/ehab029 DOI

Raut, A., Iglewski, M., & Ratka, A. (2006). Differential effects of impaired mitochondrial energy production on the function of mu and delta opioid receptors in neuronal SK-N-SH cells. Neuroscience Letters, 404(3), 242–246. https://doi.org/10.1016/j.neulet.2006.05.055 DOI

Raut, A., Rao, V. R., & Ratka, A. (2007). Changes in opioid receptor proteins during mitochondrial impairment in differentiated SK-N-SH cells. Neuroscience Letters, 422(3), 187–192. https://doi.org/10.1016/j.neulet.2007.06.015 DOI

Rigney, N., De Vries, G. J., Petrulis, A., & Young, L. J. (2022). Oxytocin, vasopressin, and social behavior: From neural circuits to clinical opportunities. Endocrinology, 163(4), bqac111. https://doi.org/10.1210/endocr/bqac111 DOI

Rinne, P., Lahnakoski, J. M., Saarimäki, H., et al. (2024). Six types of loves differentially recruit reward and social cognition brain areas. Cerebral Cortex, 34, Article bhae331. https://doi.org/10.1093/cercor/bhae331 DOI

Robison, A. J., & Nestler, E. J. (2011). Transcriptional and epigenetic mechanisms of addiction. Nature Reviews Neuroscience, 12(11), 623–637. https://doi.org/10.1038/nrn3111 DOI

Roth-Deri, I., Green-Sadan, T., & Yadid, G. (2008). β-Endorphin and drug-induced reward and reinforcement. Progress in Neurobiology, 86(1), 1–21. https://doi.org/10.1016/j.pneurobio.2008.06.003 DOI

Rysztak, L. G., & Jutkiewicz, E. M. (2022). The role of enkephalinergic systems in substance use disorders. Frontiers in Systems Neuroscience, 16, Article 932546. https://doi.org/10.3389/fnsys.2022.932546 DOI

Salamon, E., Esch, T., & Stefano, G. B. (2005). Role of amygdala in mediating sexual and emotional behavior via coupled nitric oxide release. Acta Pharmacologica Sinica, 26(3), 389–395. https://doi.org/10.1111/j.1745-7254.2005.00083.x DOI

Septimar, Z. M., Priatna, H., & Tomi, S. Y. (2021). Effect of Benson’s relaxation techniques on blood glucose levels in patients with diabetes mellitus. Enfermería Clínica, 31, S454–S456. https://doi.org/10.1016/j.enfcli.2020.09.044 DOI

Seshadri, K. (2016). The neuroendocrinology of love. Indian Journal of Endocrinology and Metabolism, 20(4), 558. https://doi.org/10.4103/2230-8210.183479 DOI

Shyu, C., Chavez, S., Boileau, I., & Foll, B. L. (2022). Quantifying GABA in addiction: A review of proton magnetic resonance spectroscopy studies. Brain Sciences, 12(7), 918. https://doi.org/10.3390/brainsci12070918 DOI

Song, H., Zou, Z., Kou, J., et al. (2015). Love-related changes in the brain: A resting-state functional magnetic resonance imaging study. Frontiers in Human Neuroscience, 9, 71. https://doi.org/10.3389/fnhum.2015.00071 DOI

Stefano, G. B. (1999). The Mu3 opiate receptor subtype. Pain Forum, 8(4), 206–209.

Stefano, G. B., Fricchione, G. L., & Esch, T. (2006). Relaxation: Molecular and physiological significance. Medical Science Monitor, 12(4), HY21–HY31.

Stefano, G. B., Esch, T., & Kream, R. M. (2019). Augmentation of whole-body metabolic status by mind-body training: Synchronous integration of tissue- and organ-specific mitochondrial function. Medical Science Monitor Basic Research, 25, 8–14. https://doi.org/10.12659/msmbr.913264 DOI

Stefano, G. B., & Esch, T. (2005). Love and stress. Neuroendocrinology Letters, 26(2), 173–174.

Stefano, G. B., Goumon, Y., Bilfinger, T. V., Welters, I. D., & Cadet, P. (2000). Basal nitric oxide limits immune, nervous and cardiovascular excitation: Human endothelia express a mu opiate receptor. Progress in Neurobiology, 60(6), 513–530. https://doi.org/10.1016/s0301-0082(99)00038-6 DOI

Stefano, G. B., & Kream, R. M. (2009). Dopamine, morphine, and nitric oxide: An evolutionary signaling triad. CNS Neuroscience & Therapeutics, 16(6), e124–e137. https://doi.org/10.1111/j.1755-5949.2009.00114.x DOI

Stefano, G. B., & Kream, R. M. (2011). Reciprocal regulation of cellular nitric oxide formation by nitric oxide synthase and nitrite reductases. Medical Science Monitor, 17(7), RA221–RA226. https://doi.org/10.12659/msm.881972 DOI

Stefano, G. B., & Kream, R. M. (2016). Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective. International Journal of Molecular Medicine, 37(3), 547–555. https://doi.org/10.3892/ijmm.2016.2471 DOI

Stefano, G. B., & Kream, R. M. (2017). Aging reversal and healthy longevity is in reach: Dependence on mitochondrial DNA heteroplasmy as a key molecular target. Medical Science Monitor, 23, 2732–2735. https://doi.org/10.12659/MSM.902515 DOI

Stefano, G. B., Mantione, K. J., Capellan, L., Casares, F. M., Challenger, S., Ramin, R., Samuel, J. M., Snyder, C., & Kream, R. M. (2015). Morphine stimulates nitric oxide release in human mitochondria. Journal of Bioenergetics and Biomembranes, 47(5), 409–417. https://doi.org/10.1007/s10863-015-9626-8 DOI

Stefano, G. B., Murga, J., Benson, H., Zhu, W., Bilfinger, T. V., & Magazine, H. I. (2001). Nitric oxide inhibits norepinephrine stimulated contraction of human internal thoracic artery and rat aorta. Pharmacological Research, 43(2), 199–203. https://doi.org/10.1006/phrs.2000.0765 DOI

Stefano, G. B., Ptáček, R., Kuželová, H., & Kream, R. M. (2012). Endogenous morphine: Up-to-date review 2011. Folia Biologica, 58(2), 49–56.

Tang, Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. Nature Reviews. Neuroscience, 16(4), 213–225. https://doi.org/10.1038/nrn3916 DOI

Toda, N., Kishioka, S., Hatano, Y., et al. (2008). Modulation of opioid actions by nitric oxide signaling. Anesthesiology, 110(1), 166–181. https://doi.org/10.1097/aln.0b013e31819146a9 DOI

Toda, N., Kishioka, S., Hatano, Y., & Toda, H. (2009). Interactions between morphine and nitric oxide in various organs. Journal of Anesthesia, 23(4), 554–568. https://doi.org/10.1007/s00540-009-0793-9 DOI

Tomkins, D. M., & Sellers, E. M. (2001). Addiction and the brain: The role of neurotransmitters in the cause and treatment of drug dependence. Canadian Medical Association Journal, 164(6), 817–821.

Tracey, K. J. (2002). The inflammatory reflex. Nature, 420(6917), 853–859. https://doi.org/10.1038/nature01321 DOI

Valentino, R. J., & Volkow, N. D. (2018). Untangling the complexity of opioid receptor function. Neuropsychopharmacology, 43(13), 2514–2520. https://doi.org/10.1038/s41386-018-0225-3 DOI

Volkow, N. D., Fowler, J. S., & Wang, G.-J. (2003). The addicted human brain: Insights from imaging studies. Journal of Clinical Investigation, 111(10), 1444–1451. https://doi.org/10.1172/jci200318533 DOI

Volkow, N. D., Fowler, J. S., Wang, G.-J., et al. (2007). Dopamine in drug abuse and addiction. Archives of Neurology, 64(11), Article 1575. https://doi.org/10.1001/archneur.64.11.1575 DOI

Volkow, N. D., Michaelides, M., & Baler, R. (2019). The neuroscience of drug reward and addiction. Physiological Reviews, 99(4), 2115–2140. https://doi.org/10.1152/physrev.00014.2018 DOI

Winick-Ng, W., Leri, F., & Kalisch, B. E. (2012). Nitric oxide and histone deacetylases modulate cocaine-induced mu-opioid receptor levels in PC12 cells. BMC Pharmacology and Toxicology, 13(1), 11. https://doi.org/10.1186/2050-6511-13-11 DOI

Wittstein, I. S., Thiemann, D. R., Lima, J. A., et al. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. New England Journal of Medicine, 352(6), 539–548. https://doi.org/10.1056/NEJMoa043046 DOI

Wronikowska-Denysiuk, O., Mrozek, W., & Budzyńska, B. (2023). The role of oxytocin and vasopressin in drug-induced reward—Implications for social and non-social factors. Biomolecules, 13(3), 405. https://doi.org/10.3390/biom13030405 DOI

Xu, R., Serritella, A. V., Sen, T., et al. (2013). Behavioral effects of cocaine mediated by nitric oxide-GAPDH transcriptional signaling. Neuron, 78(4), 623–630. https://doi.org/10.1016/j.neuron.2013.03.021 DOI

Ye, J., & Medzhitov, R. (2019). Control strategies in systemic metabolism. Nature Metabolism, 1(10), 947–957. https://doi.org/10.1038/s42255-019-0118-8 DOI

Yellen, G. (2018). Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. The Journal of Cell Biology, 217(7), 2235–2246. https://doi.org/10.1083/jcb.201803152 DOI

Zalewska-Kaszubska, J., & Czarnecka, E. (2005). Deficit in beta-endorphin peptide and tendency to alcohol abuse. Peptides, 26(4), 701–705. https://doi.org/10.1016/j.peptides.2004.11.010 DOI

Zeki, S. (2007). The neurobiology of love. FEBS Letters, 581(14), 2575–2579. https://doi.org/10.1016/j.febslet.2007.03.094 DOI

Zhu, W., Cadet, P., Baggerman, G., Mantione, K. J., & Stefano, G. B. (2005). Human white blood cells synthesize morphine: CYP2D6 modulation. Journal of Immunology, 175(11), 7357–7362. https://doi.org/10.4049/jimmunol.175.11.7357 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...