On the Potential Energy Surface of the Pyrene Dimer
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
24-15057L
The Czech Science Foundation
PubMed
39409090
PubMed Central
PMC11476719
DOI
10.3390/ijms251910762
PII: ijms251910762
Knihovny.cz E-resources
- Keywords
- CCSD(T), DLPNO, intermolecular interactions, potential energy surfaces, pyrene dimer,
- MeSH
- Dimerization * MeSH
- Models, Molecular MeSH
- Pyrenes * chemistry MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- pyrene MeSH Browser
- Pyrenes * MeSH
Knowledge of reliable geometries and associated intermolecular interaction energy (ΔE) values at key fragments of the potential energy surface (PES) in the gas phase is indispensable for the modeling of various properties of the pyrene dimer (PYD) and other important aggregate systems of a comparatively large size (ca. 50 atoms). The performance of the domain-based local pair natural orbital (DLPNO) variant of the coupled-cluster theory with singles, doubles and perturbative triples in the complete basis set limit [CCSD(T)/CBS] method for highly accurate predictions of the ΔE at a variety of regions of the PES was established for a representative set of pi-stacked dimers, which also includes the PYD. For geometries with the distance between stacked monomers close to a value of such a distance in the ΔE minimum structure, an excellent agreement between the canonical CCSD(T)/CBS results and their DLPNO counterparts was found. This finding enabled us to accurately characterize the lowest-lying configurations of the PYD, and the physical origin of their stabilization was thoroughly analyzed. The proposed DLPNO-CCSD(T)/CBS procedure should be applied with the aim of safely locating a global minimum of the PES and firmly establishing the pertaining ΔE of even larger dimers in studies of packing motifs of organic electronic devices and other novel materials.
See more in PubMed
Li X., Ge W., Guo S., Bai J., Hong W. Characterization and Application of Supramolecular Junctions. Angew. Chem. 2023;62:202216819. doi: 10.1002/anie.202216819. PubMed DOI
Zhou P., Fu Y., Wang M., Qiu R., Wang Y., Stoddart J.F., Wang Y., Chen H. Robust Single-Supermolecule Switches Operating in Response to Two Different Noncovalent Interaction. J. Am. Chem. Soc. 2023;145:18800–18811. doi: 10.1021/jacs.3c03282. PubMed DOI
Poriel C., Rault-Berthelot J. Dihydroindenofluorenes as building units in organic semiconductors for organic electronics. Chem. Soc. Rev. 2023;52:6754–6805. doi: 10.1039/D1CS00993A. PubMed DOI
Roy R., Brouillac C., Jacques E., Quiton C., Poriel C. π-Conjugated Nanohoops: A New Generation of Curved Materials for Organic Electronics. Angew. Chem. 2024;63:e202402608. doi: 10.1002/anie.202402608. PubMed DOI
Zhao W., Ding Z., Yang Z., Lu T., Yang B., Jiang S. Remarkable Off–On Tunable Solid-State Luminescence by the Regulation of Pyrene Dimer. Chem. Eur. J. 2024;30:e202303202. doi: 10.1002/chem.202303202. PubMed DOI
Liao Q., Huang A., Wang J., Chang K., Li H., Yao P., Zhong C., Xie P., Wang J., Li Z., et al. Controllable π–π coupling of intramolecular dimer models in aggregated states. Chem. Sci. 2024;15:4364–4373. doi: 10.1039/D3SC05533G. PubMed DOI PMC
Du W., Zheng Y., Wang X., Lei J., Wang H., Tian X., Zou S., Bloino J., Gou Q., Caminati W., et al. Scissor-like Face to Face π−π Stacking: A Surprising Preference Induced by the Isocyano Group in the Self-Assembled Dimer of Phenyl Isocyanide. J. Phys. Chem. Lett. 2022;13:9934–9940. doi: 10.1021/acs.jpclett.2c02807. PubMed DOI
Germer S., Bauer M., Hübner O., Marten R., Dreuw A., Himmel H.-J. Isolated Dimers Versus Solid-State Dimers of N-Heteropolycycles: Matrix-Isolation Spectroscopy in Concert with Quantum Chemistry. Chem. Eur. J. 2023;29:e202302296. doi: 10.1002/chem.202302296. PubMed DOI
Miao X., Preitschopf T., Sturm F., Fischer F., Fischer I., Lemmens A.K., Limbacher M., Mitric R. Stacking Is Favored over Hydrogen Bonding in Azaphenanthrene Dimers. J. Phys. Chem. Lett. 2022;13:8939–8944. doi: 10.1021/acs.jpclett.2c02280. PubMed DOI
Torres-Hernández F., Pinillos P., Li W., Saragi R.T., Camiruaga A., Juanes M., Usabiaga I., Lessari A., Fernández J.A. Competition between O−H and S−H Intermolecular Interactions in Conformationally Complex Systems: The 2-Phenylethanethiol and 2-Phenylethanol Dimers. J. Phys. Chem. Lett. 2024;15:5674–5680. doi: 10.1021/acs.jpclett.4c00903. PubMed DOI PMC
Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017;19:32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI
Hübner O., Thusek J., Himmel H.-J. Pyridine Dimers and Their Low-Temperature Isomerization: A High-Resolution Matrix-Isolation Spectroscopy Study. Angew. Chem. 2023;62:e202218042. doi: 10.1002/anie.202218042. PubMed DOI
Ma Q., Werner H.-J. Explicitly correlated local coupled-cluster methods using pair natural orbitals. WIREs Comput. Mol. Sci. 2018;8:e1371. doi: 10.1002/wcms.1371. PubMed DOI
Calvin J.A., Peng C., Rishi V., Kumar A., Valeev E.F. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem. Rev. 2021;121:1203–1231. doi: 10.1021/acs.chemrev.0c00006. PubMed DOI
Saragi R.T., Calabrese C., Juanes M., Pinacho R., Rubio J.E., Pérez C., Lessari A. π-Stacking Isomerism in Polycyclic Aromatic Hydrocarbons: The 2-Naphthalenethiol Dimer. J. Phys. Chem. Lett. 2023;14:207–231. doi: 10.1021/acs.jpclett.2c03299. PubMed DOI PMC
Riplinger C., Neese F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138:034106. doi: 10.1063/1.4773581. PubMed DOI
Riplinger C., Pinski P., Becker U., Valeev E.F., Neese F. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016;144:024109. doi: 10.1063/1.4939030. PubMed DOI
Riplinger C., Sandhoefer B., Hansen A., Neese F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013;139:134101. doi: 10.1063/1.4821834. PubMed DOI
Santra G., Semidalas E., Mehta N., Karton A., Martin J.M.L. S66x8 noncovalent interactions revisited: New benchmark and performance of composite localized coupled-cluster methods. Phys. Chem. Chem. Phys. 2022;24:25555–25570. doi: 10.1039/D2CP03938A. PubMed DOI
Nagy P.R., Gyevi-Nagy L., Lőrincz B.D., Kállay M. Pursuing the basis set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: Case study on the S66 compilation. Mol. Phys. 2022;121:e2109526. doi: 10.1080/00268976.2022.2109526. DOI
Donchev A.G., Taube A.G., Decolvenaere E., Hargus C., McGibbon R.T., Law K.-H., Gregersen B.A., Li J.-L., Palmo K., Siva K., et al. Quantum chemical benchmark databases of gold-standard dimer interaction energies. Sci. Data. 2021;8:55. doi: 10.1038/s41597-021-00833-x. PubMed DOI PMC
Al-Hamdani Y.S., Nagy P.R., Zen A., Barton D., Kállay M., Bradenburg J.G., Tkatchenko A. Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat. Commun. 2021;12:3927. doi: 10.1038/s41467-021-24119-3. PubMed DOI PMC
Czernek J., Brus J. Reliable Dimerization Energies for Modeling of Supramolecular Junctions. Int. J. Mol. Sci. 2024;25:602. doi: 10.3390/ijms25010602. PubMed DOI PMC
Guo Y., Riplinger C., Becker U., Liakos D.G., Minenkov Y., Cavallo L., Neese F. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)] J. Chem. Phys. 2018;148:011101. doi: 10.1063/1.5011798. PubMed DOI
Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC
Czernek J., Brus J. Revisiting the Most Stable Structures of the Benzene Dimer. Int. J. Mol. Sci. 2024;25:8272. doi: 10.3390/ijms25158272. PubMed DOI PMC
Zhang X., Fu Z., Jiang X., Yang Z., Wang S., Wang K., Wu Z., Zhang S.-T., Liu H., Yang B. Robust formation of discrete non-covalent pyrene dimers in an amorphous film by strong π-π interaction. Chem. Commun. 2022;58:8250–8253. doi: 10.1039/D2CC02125K. PubMed DOI
Shao C., Zhai Y., Cardenas-Salvarez A., Zhang W., Grajales-Gonzales E., Bai X., Li Y., Monge-Palacios M., Sarathy S.M. High-resolution mass spectrometry of pyrene dimers formed in a jet-stirred reactor. Combust. Flame. 2023;255:112886. doi: 10.1016/j.combustflame.2023.112886. DOI
Feng X., Wang X., Redshaw C., Tang B.Z. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chem. Soc. Rev. 2023;52:6715–6753. doi: 10.1039/D3CS00251A. PubMed DOI
Leboucher H., Simon A., Rapacioli M. Structures and stabilities of PAH clusters solvated by water aggregates: The case of the pyrene dimer. J. Chem. Phys. 2023;158:114308. doi: 10.1063/5.0139482. PubMed DOI
Xia Z.-A., Yao M., Wang S., Yang D., Wang Z., Wu R., Zhang S.-T., Liu H., Yang B. Tailoring pyrene excimer luminescence via controlled sulfur oxidation. J. Mater. Chem. C. 2024;12:9305–9311. doi: 10.1039/D4TC01348D. DOI
Shao C., Wang Q., Zhang W., Bennett A., Li Y., Guo J., Im H.G., Roberts W.L., Violi A., Sarathy M. Elucidating the polycyclic aromatic hydrocarbons involved in soot inception. Commun. Chem. 2023;6:223. doi: 10.1038/s42004-023-01017-x. PubMed DOI PMC
Gong Y.-B., Zhang P., Gu Y., Wang J.-Q., Han M.-M., Chen C., Zhan X.-J., Xie Z.-L., Zou B., Peng Q., et al. The Influence of Molecular Packing on the Emissive Behavior of Pyrene Derivatives: Mechanoluminiscence and Mechanochromism. Adv. Opt. Mater. 2018;6:1800198. doi: 10.1002/adom.201800198. DOI
Gray M., Herbert J.M. Assessing the domain-based local pair natural orbital (DLPNO) approximation for non-covalent interactions in sizable supramolecular complexes. J. Chem. Phys. 2024;161:054114. doi: 10.1063/5.0206533. PubMed DOI PMC
Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Kendall R.A., Dunning T.H., Jr. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Boys S.F., Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI
Peterson K.A., Woon D.E., Dunnig T.J., Jr. Benchmark calculations with correlated wave functions. J. Chem. Phys. 1994;100:7410–7415. doi: 10.1063/1.466884. DOI
The Benchmark Energy & Geometry Database (BEGDB) [(accessed on 28 August 2024)]. Available online: http://www.begdb.org/
Kesharwani M.K., Karton M., Sylvetsky N., Martin J.M.L. The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit. Austr. J. Chem. 2018;71:238–248. doi: 10.1071/CH17588. DOI
Podeszwa R., Bukowski R., Szalewicz K. Potential Energy Surface for the Benzene Dimer and Perturbational Analysis of π−π Interactions. J. Phys. Chem. A. 2006;110:10345–10354. doi: 10.1021/jp064095o. PubMed DOI
Schnell M., Erlekam U., Bunker P.R., von Helden G., Grabow J.-U., Meijer G., van der Avoird A. Structure of the Benzene Dimer—Governed by Dynamics. Angew. Chem. Int. Ed. 2013;52:5180–5183. doi: 10.1002/anie.201300653. PubMed DOI
Herman K.M., Aprà E., Xantheas S.S. A critical comparison of CH···π versus π···π interactions in the benzene dimer: Obtaining benchmarks at the CCSD(T) level and assessing the accuracy of lower scaling methods. Phys. Chem. Chem. Phys. 2023;25:4824–4838. doi: 10.1039/D2CP04335A. PubMed DOI
Podeszwa R., Szalewicz K. Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 2008;10:2735–2746. doi: 10.1039/b719725j. PubMed DOI
Marshall M.S., Burns L.A., Sherrill C.D. Basis set convergence of the coupled-cluster correction: Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. J. Chem. Phys. 2011;135:194102. doi: 10.1063/1.3659142. PubMed DOI
Patkowski K. Recent developments in symmetry-adapted perturbation theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020;10:e1452. doi: 10.1002/wcms.1452. DOI
Shahbaz M., Szalewicz K. Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions. Theor. Chem. Acc. 2019;138:25. doi: 10.1007/s00214-019-2414-5. DOI
Czernek J., Brus J., Czerneková V., Kobera L. Quantifying the Intrinsic Strength of C–H⋯O Intermolecular Interactions. Molecules. 2023;28:4478. doi: 10.3390/molecules28114478. PubMed DOI PMC
Henrichsmeyer J., Thelen M., Bröckel M., Fadel M., Behnle S., Sekkal-Rahal M., Fink R.F. Rationalizing Aggregate Structures with Orbital Contributions to the Exchange-Repulsion Energy. ChemPhysChem. 2023;24:e202300097. doi: 10.1002/cphc.202300097. PubMed DOI
Gray M., Herbert J.M. Origins of Offset-Stacking in Porous Frameworks. J. Phys. Chem. C. 2023;127:2675–2686. doi: 10.1021/acs.jpcc.2c08413. DOI
Rapacioli M., Spiegelman F., Talbi D., Mineva T., Goursot A., Heine T., Seifert G. Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: Application to polycyclic aromatic hydrocarbon clusters. J. Chem. Phys. 2009;130:244304. doi: 10.1063/1.3152882. PubMed DOI
Baba M., Saitoh M., Kowaka Y., Taguma K., Yoshida K., Semba Y., Kasahara S., Yamanaka T., Ohshima Y., Hsu Y.-C., et al. Vibrational and rotational structure and excited-state dynamics of pyrene. J. Chem. Phys. 2009;131:224318. doi: 10.1063/1.3270136. PubMed DOI
Hoche J., Schmitt H.-C., Humeniuk A., Fischer I., Mitrić R., Röhr M.I.S. The mechanism of excimer formation: An experimental and theoretical study on the pyrene dimer. Phys. Chem. Chem. Phys. 2017;19:25002–25015. doi: 10.1039/C7CP03990E. PubMed DOI
Sabbah H., Biennier L., Klippenstein S.J., Sims I.R., Rowe B.R. Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization. J. Phys. Chem. Lett. 2010;1:2962–2967. doi: 10.1021/jz101033t. DOI
Sandler I., Chen J., Taylor M., Sharma S., Ho J. Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. J. Phys. Chem. A. 2021;125:1553–1563. doi: 10.1021/acs.jpca.0c11270. PubMed DOI
Carter-Fenk K., Herbert J.M. Reinterpreting π-stacking. Phys. Chem. Chem. Phys. 2020;22:24870–24886. doi: 10.1039/D0CP05039C. PubMed DOI
Carter-Fenk K., Herbert J.M. Electrostatics does not dictate the slip-stacked arrangement of aromatic π–π interactions. Chem. Sci. 2020;11:6758–6765. doi: 10.1039/D0SC02667K. PubMed DOI PMC
Cabaleiro-Lago E.M., Rodríguez-Otero J., Vázquez S.A. Electrostatic penetration effects stand at the heart of aromatic π interactions. Phys. Chem. Chem. Phys. 2022;24:8979–8991. doi: 10.1039/D2CP00714B. PubMed DOI
Werner H.J., Knowles P.J., Manby F.R., Black J.A., Doll K., Hesselmann A., Kats D., Kohn A., Korona T., Kreplin D.A., et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152:144107. doi: 10.1063/5.0005081. PubMed DOI
Balasubramani S.G., Chen G.P., Coriani S., Diedenhofen M., Frank M.S., Franzke Y.J., Furche F., Grotjahn R., Harding M.E., Hättig C., et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC
Weigend F., Häser M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997;97:331–340. doi: 10.1007/s002140050269. DOI
Weigend F., Häser M., Patzelt H., Ahlrichs R. RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chem. Phys. Lett. 1998;294:143–152. doi: 10.1016/S0009-2614(98)00862-8. DOI
Czernek J., Brus J., Czerneková V. A Cost Effective Scheme for the Highly Accurate Description of Intermolecular Binding in Large Complexes. Int. J. Mol. Sci. 2022;23:15773. doi: 10.3390/ijms232415773. PubMed DOI PMC
Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A.K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286:243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI
Pinski P., Riplinger C., Valeev E.F., Neese F. Sparse maps–A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. J. Chem. Phys. 2015;143:034108. doi: 10.1063/1.4926879. PubMed DOI
Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12:e1606. doi: 10.1002/wcms.1606. DOI
Heßelmann A., Jansen G. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 2005;122:014103. doi: 10.1063/1.1824898. PubMed DOI
Czernek J., Brus J., Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J. Chem. Phys. 2022;156:204303. doi: 10.1063/5.0093557. PubMed DOI
Heßelmann A., Jansen G. First-order intermolecular interaction energies from Kohn–Sham orbitals. Chem. Phys. Lett. 2002;357:464–470. doi: 10.1016/S0009-2614(02)00538-9. DOI
Heßelmann A., Jansen G. Intermolecular dispersion energies from time-dependent density functional theory. Chem. Phys. Lett. 2003;367:778–784. doi: 10.1016/S0009-2614(02)01796-7. DOI
Heßelmann A., Jansen G. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory. Chem. Phys. Lett. 2002;362:319–325. doi: 10.1016/S0009-2614(02)01097-7. DOI
Moszynski R., Heijmen T.G.A., Jeziorski B. Symmetry-adapted perturbation theory for the calculation of Hartree–Fock interaction energies. Mol. Phys. 1996;88:741–758. doi: 10.1080/00268979650026262. DOI
Adamo C., Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16. Gaussian, Inc.; Wallingford, CT, USA: 2019. Revision C.01.
Dai Y., Rambaldi F., Negri F. Eclipsed and Twisted Excimers of Pyrene and 2-Azapyrene: How Nitrogen Substitution Impacts Excimer Emission. Molecules. 2024;29:507. doi: 10.3390/molecules29020507. PubMed DOI PMC