Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments

. 2020 Oct 24 ; 21 (21) : . [epub] 20201024

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33114411

Grantová podpora
LTAUSA18011 Ministerstvo Školství, Mládeže a Tělovýchovy

Most recently a renewed interest in several areas has arisen in factors governing the 1H NMR chemical shift (1H CS) of protons in aromatic systems. Therefore, it is important to describe how 1H CS values are affected by π-stacking intermolecular interactions. The parametrization of radial and angular dependences of the 1H CS is proposed, which is based on conventional gauge-independent atomic orbital (GIAO) calculations of explicit molecular fragments. Such a parametrization is exemplified for a benzene dimer with intermonomer vertical and horizontal distances which are in the range of values often found in crystals of organic compounds. Results obtained by the GIAO calculations combined with B3LYP and MP2 methods were compared, and revealed qualitatively the same trends in the 1H CS data. The parametrization was found to be quantitatively correct for the T-shaped benzene dimers, and its limitations were discussed. Parametrized 1H CS surfaces should become useful for providing additional restraints in the search of site-specific information through an analysis of structurally induced 1H CS changes.

Zobrazit více v PubMed

Larive C.K., Barding G.A., Dinges M.N. NMR spectroscopy for metabolomics and metabolic profiling. Anal. Chem. 2015;87:133–146. doi: 10.1021/ac504075g. PubMed DOI

Zhang R., Mroue K.H., Sun P., Ramamoorthy A. High-Resolution Proton NMR Spectroscopy of Polymers and Biological Solids. In: Webb G.A., editor. Modern Magnetic Resonance. 2nd ed. Springer; Cham, Switzerland: 2018. pp. 521–536.

Stone A.J. The Theory of Intermolecular Forces. 1st ed. Clarendon Press; Oxford, UK: 2002. pp. 56–63.

Kudisch B., Maiuri M., Moretti L., Oviedo M.B., Wang L., Oblinsky D.G., Prud’homme R.K., Wong B.M., McGill S.A., Scholes G.D. Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T. Proc. Natl. Acad. Sci. USA. 2020;117:11289–11298. doi: 10.1073/pnas.1918148117. PubMed DOI PMC

Platzer G., Mayer M., Beier A., Brüschweiler S., Fuchs J.E., Engelhardt H., Geist L., Bader G., Schörghuber J., Lichtenecker R., et al. PI by NMR: Probing CH–π Interactions in Protein–Ligand Complexes by NMR Spectroscopy. Angew. Chem. Int. Ed. 2020;59:14861–14868. doi: 10.1002/anie.202003732. PubMed DOI PMC

Rickhaus M., Jirasek M., Tejerina L., Gotfredsen H., Peeks M.D., Haver R., Jiang H.-W., Claridge T.D.W., Anderson H.L. Global aromaticity at the nanoscale. Nat. Chem. 2020;12:236–241. doi: 10.1038/s41557-019-0398-3. PubMed DOI PMC

Gabryelczyk B., Cai H., Shi X., Sun Y., Swinkels P.J.M., Salentinig S., Pervushin K., Miserez A. Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides. Nat. Commun. 2019;10 doi: 10.1038/s41467-019-13469-8. PubMed DOI PMC

Chaudhari S.R., Griffin J.M., Broch K., Lesage A., Lemaur V., Dudenko D., Olivier Y., Sirringhaus H., Emsley L., Grey C.P. Donor–acceptor stacking arrangements in bulk and thin-film high-mobility conjugated polymers characterized using molecular modelling and MAS and surface-enhanced solid-state NMR spectroscopy. Chem. Sci. 2017;8:3126–3136. doi: 10.1039/C7SC00053G. PubMed DOI PMC

Bass T.M., Carr C.R., Sherbow T.J., Fettinger J.C., Berben L.A. Syntheses of Square Planar Galluim Complexes and a Proton NMR Correlation Probing Metalloaromaticity. Inor. Chem. 2020;59:13517–13523. doi: 10.1021/acs.inorgchem.0c01908. PubMed DOI

Lampkin B.J., Karadakov P.B., VanVeller B. Detailed Visualization of Aromaticity Using Isotropic Magnetic Shielding. Angew. Chem. Int. Ed. 2020;59:2–9. doi: 10.1002/anie.202008362. PubMed DOI

Kilymis D., Bartók A.P., Pickard C.J., Forse A.C., Merlet C. Efficient prediction of nucleus independent chemical shifts for polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 2020;22:13746–13755. doi: 10.1039/D0CP01705A. PubMed DOI

Pöppler A.-C., Corlett E.K., Pearce H., Seymour M.P., Reid M., Montgomery M.G., Brown S.P. Single-crystal X-ray diffraction and NMR crystallography of a 1:1 cocrystal of dithianon and pyrimethanil. Acta Cryst. C. 2017;73:149–156. doi: 10.1107/S2053229617000870. PubMed DOI PMC

Schwartz E., Lim E., Gowda C.M., Liscio A., Fenwick O., Tu G., Palermo V., de Gelder R., Cornelissen J.J.L.M., Van Eck E.R.H., et al. Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides. Chem. Mater. 2010;8:2597–2607. doi: 10.1021/cm903664g. DOI

Gowda C.M., Vasconcelos F., Schwartz E., Van Eck E.R.H., Marsman M., Cornelissen J.J.L.M., Rowan A.E., De Wijs G.A., Kentgens A.P.M. Hydrogen bonding and chemical shifts assignments in carbazole functionalized isocyanides from solid-state NMR and first-principles calculations. Phys. Chem. Chem. Phys. 2011;13:13082–13095. doi: 10.1039/c1cp20304e. PubMed DOI

Bonhomme C., Gervais C., Babonneau F., Coelho C., Pourpoint F., Azais T., Asbrook S.E., Griffin J.M., Yates J.R., Pickard J.C. First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist’s Point of View. Chem. Rev. 2012;112:5733–5779. doi: 10.1021/cr300108a. PubMed DOI

Bootsma A.N., Doney A.C., Wheeler S.E. Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chain. J. Am. Chem. Soc. 2019;141:11027–11035. doi: 10.1021/jacs.9b00936. PubMed DOI

D’Ischia M., Napolitano A., Pezzella A., Meredith P., Buehler M. Melanin biopolymers: Tailoring chemical complexity for materials design. Angew. Chem. Int. Ed. 2020;59:11196–11205. doi: 10.1002/anie.201914276. PubMed DOI

Lyu Q., Hsueh N., Chai C.L.L. Unravelling the polydopamine mystery: Is the end in sight? Polym. Chem. 2019;10:5771–5777. doi: 10.1039/C9PY01372E. DOI

Proks V., Brus J., Pop-Georgievski O., Večerníková E., Wiśniewski W., Kotek J., Urbanová M., Rypáček F. Thermal-Induced Transformation of Polydopamine Structures: An Efficient Route for the Stabilization of the Polydopamine Surfaces. Macromol. Chem. Phys. 2013;214:499–507. doi: 10.1002/macp.201200505. DOI

Circu M., Filip C. Closer to the polydopamine structure: New insights from a combined 13C/1H/2H solid-state NMR study on deuterated samples. Polym. Chem. 2018;9:3379–3387. doi: 10.1039/C8PY00633D. DOI

Loeffler J.R., Fernández-Quintero M.L., Schauperl M., Liedl K.R. STACKED – Solvation Theory of Aromatic Complexes as Key for Estimating Drug Binding. J. Chem. Inf. Model. 2020;60:2304–2313. doi: 10.1021/acs.jcim.9b01165. PubMed DOI PMC

Bartolomei M., Pirani F., Marques J.M.C. Low-energy structures of benzene clusters with a novel accurate potential surface. J. Comput. Chem. 2015;36:2291–2301. doi: 10.1002/jcc.24201. PubMed DOI

Kennedy M.R., McDonald A.R., DePrince A.E., III, Marshall M.S., Podeszwa R., Sherrill C.D. Resolving the three-body contribution to the lattice energy of crystalline benzene: Benchmark results from coupled-cluster theory. J. Chem. Phys. 2014;140 doi: 10.1063/1.4869686. PubMed DOI

Miliordos E., Apra E., Xantheas S.S. Benchmark Theoretical Study of the π−π Binding Energy in the Benzene Dimer. J. Phys. Chem. A. 2014;118:7568–7578. doi: 10.1021/jp5024235. PubMed DOI

DiStasio R.A., Jr., Von Helden G., Steele R.P., Head-Gordon M. On the T-shaped structures of the benzene dimer. Chem. Phys. Lett. 2007;437:277–283. doi: 10.1016/j.cplett.2007.02.034. DOI

Czernek J., Brus J. Exploring Accuracy Limits of Predictions of the 1H NMR Chemical Shielding Anisotropy in the Solid State. Molecules. 2019;24:1731. doi: 10.3390/molecules24091731. PubMed DOI PMC

Czernek J., Brus J. Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int. J. Mol. Sci. 2020;21:2700. doi: 10.3390/ijms21082700. PubMed DOI PMC

Czernek J., Brus J. Polymorphic Forms of Valinomycin Investigated by NMR Crystallography. Int. J. Mol. Sci. 2020;21:4907. doi: 10.3390/ijms21144907. PubMed DOI PMC

Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC

Řezáč J., Jurečka P., Riley K.E., Černý J., Valdes H., Pluháčková K., Berka K., Řezáč T., Pitoňák M., Vondrášek J., et al. Quantum Chemical Benchmark Energy and Geometry Database for Molecular Clusters and Complex Molecular Systems (www.begdb.com. ): A Users Manual and Examples. Collect. Czech. Chem. Commun. 2008;73:1261–1270. doi: 10.1135/cccc20081261. DOI

Brown S.P. Applications of high-resolution 1H solid-state NMR. Solid State Nucl. Magn. Reson. 2012;41:1–27. doi: 10.1016/j.ssnmr.2011.11.006. PubMed DOI

Dudenko D.V., Yates J.R., Harris K.D.M., Brown S.P. An NMR crystallography DFT-D approach to analyse the role of intermolecular hydrogen bonding and π–π interactions in driving cocrystallisation of indomethacin and nicotinamide. CrystEngComm. 2013;15:8797–8807. doi: 10.1039/c3ce41240g. DOI

Dudenko D.V., Williams P.A., Hughes C.E., Antzutkin O.N., Velaga S.P., Brown S.P., Harris K.D.M. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids. J. Phys. Chem. C. 2013;117:12258–12265. doi: 10.1021/jp4041106. PubMed DOI PMC

Czernek J., Brus J. The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra. Chem. Phys. Lett. 2014;608:334–339. doi: 10.1016/j.cplett.2014.05.099. DOI

Carignani E., Borsacchi S., Bradley J.P., Brown S.P., Geppi M. Strong Intermolecular Ring Current Influence on 1H Chemical Shifts in Two Crystalline Forms of Naproxen: A Combined Solid-State NMR and DFT Study. J. Phys. Chem. C. 2013;117:17731–17740. doi: 10.1021/jp4044946. DOI

Czernek J. On the solid-state NMR spectra of naproxen. Chem. Phys. Lett. 2015;619:230–235. doi: 10.1016/j.cplett.2014.11.031. DOI

Corlett E.K., Blade H., Hughes L.P., Sidebottom P.J., Walker D., Walton R.I., Brown S.P. Investigating discrepancies between experimental solid-state NMR and GIPAW calculation: N=C–N 13C and OH⋯O 1H chemical shifts in pyridinium fumarates and their cocrystals. Solid State Nucl. Magn. Reson. 2020;108 doi: 10.1016/j.ssnmr.2020.101662. PubMed DOI

Hušák M., Jegorov A., Rohlíček J., Fitch A., Czernek J., Kobera L., Brus J. Determining the Crystal Structures of Peptide Analogs of Boronic Acid in the Absence of Single Crystals: Intricate Motifs of Ixazomib Citrate Revealed by XRPD Guided by ss-NMR. Cryst. Growth Des. 2018;18:3616–3625. doi: 10.1021/acs.cgd.8b00402. DOI

Harris R.K., Hodgkinson P., Zorin V., Dumez J.N., Elena-Herrmann B., Emsley L., Salager E., Stein R.S. Computation and NMR crystallography of terbutaline sulfate. Magn. Reson. Chem. 2010;48:S103–S112. doi: 10.1002/mrc.2636. PubMed DOI

Kerr H.E., Softley L.K., Suresh K., Nangia A., Hodgkinson P., Radosavjlevic Evans I. A furosemide–isonicotinamide cocrystal: An investigation of properties and extensive structural disorder. CrystEngComm. 2015;17:6707–6715. doi: 10.1039/C5CE01183C. DOI

Frantsuzov I., Ford S.J., Radosavjlevic Evans I., Horsewill A.J., Trommsdorff H.P., Johnson M.R. Measurement of Proton Tunneling in Short Hydrogen Bonds in Single Crystals of 3,5 Pyridinedicarboxylic Acid Using Nuclear Magnetic Resonance Spectroscopy. Phys. Rev. Lett. 2014;113 doi: 10.1103/PhysRevLett.113.018301. PubMed DOI

Dračínský M., Hodgkinson P. A molecular dynamics study of the effects of fast molecular motions on solid-state NMR parameters. CrystEngComm. 2013;15:8705–8712. doi: 10.1039/c3ce40612a. DOI

Nishiyama Y., Malon M., Potrzebowski M.J., Paluch P., Amoreux J.P. Accurate NMR determination of C–H or N–H distances for unlabeled molecules. Solid State Nucl. Magn. Reson. 2016;73:15–21. doi: 10.1016/j.ssnmr.2015.06.005. PubMed DOI

Zhang R., Mroue K.H., Ramamoorthy A. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy. Acc. Chem. Res. 2017;50:1105–1113. doi: 10.1021/acs.accounts.7b00082. PubMed DOI PMC

Li M., Lu X., Xu W., Troup G.M., McNevin M.J., Nie H., Su Y. Quantifying Pharmaceutical Formulations from Proton Detected Solid-State NMR under Ultrafast Magic Angle Spinning. J. Pharm. Sci. 2020;109:3045–3053. doi: 10.1016/j.xphs.2020.06.026. PubMed DOI

Huber R.G., Margreiter M.A., Fuchs J.E., Von Grefenstein S., Tuatermann C.S., Liedl K.R., Fox T. Heteroaromatic π-Stacking Energy Landscapes. J. Chem. Inf. Model. 2014;54:1371–1379. doi: 10.1021/ci500183u. PubMed DOI PMC

Gyevy-Nagy L., Kállay M., Nagy P.R. Integral-Direct and Parallel Implementation of the CCSD(T) Method: Algorithmic Developments and Large-Scale Applications. J. Chem. Theory Comput. 2020;16:366–384. doi: 10.1021/acs.jctc.9b00957. PubMed DOI

Bootsma A.N., Doney A.C., Wheeler S.E. Tuning Stacking Interactions between Asp–Arg Salt Bridges and Heterocyclic Drug Fragments. J. Chem. Inf. Model. 2019;59:149–158. doi: 10.1021/acs.jcim.8b00563. PubMed DOI

Brandl M., Weiss M.S., Jabs A., Sühnel J., Hilgenfeld R. C–H … π-Interaction in Proteins. J. Mol. Biol. 2001;307:357–377. doi: 10.1006/jmbi.2000.4473. PubMed DOI

Nishiyo M., Umezawa Y., Fantini J., Weiss M.S., Chakrabarti P. CH–π hydrogen bonds in biological macromolecules. Phys. Chem. Chem. Phys. 2014;16:12648–12683. doi: 10.1039/C4CP00099D. PubMed DOI

Sahakyan A.B., Vendruscolo M. Analysis of the Contributions of Ring Current and Electric Field Effects to the Chemical Shifts of RNA Bases. J. Phys. Chem. B. 2013;117:1989–1998. doi: 10.1021/jp3057306. PubMed DOI

Widdifield C.M., Farrell J.D., Cole J.C., Howard J.A.K., Hodgkinson P. Resolving alternative organic crystal structures using density functional theory and NMR chemical shifts. Chem. Sci. 2020;11:2987–2992. doi: 10.1039/C9SC04964A. PubMed DOI PMC

Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI

Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI

Boys S., Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI

Chai J.-D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615–6620. doi: 10.1039/b810189b. PubMed DOI

Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09. Gaussian, Inc.; Wallingford, UK: 2013. Revision D.01.

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C. First principles simulation: Ideas, illustrations, and the CASTEP code. J. Phys. Condens. Matter. 2002;14:2717–2744. doi: 10.1088/0953-8984/14/11/301. DOI

Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63 doi: 10.1103/PhysRevB.63.245101. DOI

Yates J.R., Pickard C.J., Mauri F. Calculations of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76 doi: 10.1103/PhysRevB.76.024401. DOI

BIOVIA Materials Studio Dassault Systèmes, Vélizy-Villacoublay: Paris, France. [(accessed on 22 September 2020)]; Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/

Gao S.-P., Pickard C.J., Perlov A., Milman V. Core-Level Spectroscopy Calculation and the Plane Wave Pseudopotential Method. J. Phys. Condens. Matter. 2009;21 doi: 10.1088/0953-8984/21/10/104203. PubMed DOI

Halkier A., Helgaker T., Jørgensen P., Klopper W., Koch H., Olsen J., Wilson A.K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998;286:243–252. doi: 10.1016/S0009-2614(98)00111-0. DOI

Patkowski K. Recent developments in symmetry-adapted perturbation theory. Wiley Interdiscip. Rev. Comput. Mol. Phys. 2019;10 doi: 10.1002/wcms.1452. DOI

Hesselmann A., Jansen G., Schütz M. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 2005;122 doi: 10.1063/1.1824898. PubMed DOI

Hesselmann A., Jansen G., Schütz M. Interaction Energy Contributions of H-Bonded and Stacked Structures of the AT and GC DNA Base Pairs from the Combined Density Functional Theoryand Intermolecular Perturbation Theory Approach. J. Am. Chem. Soc. 2006;128:11730–11731. doi: 10.1021/ja0633363. PubMed DOI

Werner H.J., Knowles P.J., Manby F.R., Black J.A., Doll K., Hesselmann A., Kats D., Kohn A., Korona T., Kreplin D.A., et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152 doi: 10.1063/5.0005081. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...