A Volumetric Analysis of the 1H NMR Chemical Shielding in Supramolecular Systems

. 2021 Mar 24 ; 22 (7) : . [epub] 20210324

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33805147

Grantová podpora
LTAUSA18011 Ministerstvo Školství, Mládeže a Tělovýchovy

The liquid state NMR chemical shift of protons is a parameter frequently used to characterize host-guest complexes. Its theoretical counterpart, that is, the 1H NMR chemical shielding affected by the solvent (1H CS), may provide important insights into spatial arrangements of supramolecular systems, and it can also be reliably obtained for challenging cases of an aggregation of aromatic and antiaromatic molecules in solution. This computational analysis is performed for the complex of coronene and an antiaromatic model compound in acetonitrile by employing the GIAO-B3LYP-PCM approach combined with a saturated basis set. Predicted 1H CS values are used to generate volumetric data, whose properties are thoroughly investigated. The 1H CS isosurface, corresponding to a value of the proton chemical shift taken from a previous experimental study, is described. The presence of the 1H CS isosurface should be taken into account in deriving structural information about supramolecular hosts and their encapsulation of small molecules.

Zobrazit více v PubMed

Gao W.-X., Feng H.-J., Guo B.-B., Lu Y., Jin G.-X. Coordination-Directed Construction of Molecular Links. Chem. Rev. 2020;120:6288–6325. doi: 10.1021/acs.chemrev.0c00321. PubMed DOI

Percástegui E.G., Ronson T.K., Nitschke J.R. Design and Applications of Water-Soluble Coordination Cages. Chem. Rev. 2020;120:13480–13544. doi: 10.1021/acs.chemrev.0c00672. PubMed DOI PMC

Hardy M., Lützen A. Better Together: Functional Heterobimetallic Macrocyclic and Cage-like Assemblies. Chem. A Eur. J. 2020;26:13332–13346. doi: 10.1002/chem.202001602. PubMed DOI PMC

Ling Q.-H., Zhu J.-L., Qin Y., Xu L. Naphthalene diimide- and perylene diimide-based supramolecular cages. Mater. Chem. Front. 2020;4:3176–3189. doi: 10.1039/D0QM00540A. DOI

Bao S.-J., Xu Z.-M., Ju Y., Song Y.-L., Wang H., Niu Z., Li X., Braunstein P., Lang J.-P. The Covalent and Coordination Co-Driven Assembly of Supramolecular Octahedral Cages with Controllable Degree of Distortion. J. Am. Chem. Soc. 2020;142:13356–13361. doi: 10.1021/jacs.0c07014. PubMed DOI

Zhang D., Ronson T.K., Greenfield J.L., Brotin T., Berthault P., Léonce E., Zhu J.-L., Xu L., Nitschke J.R. Enantiopure [Cs+/Xe⊂Cryptophane]⊂FeII4L4 Hierarchical Superstructures. J. Am. Chem. Soc. 2019;141:8339–8345. doi: 10.1021/jacs.9b02866. PubMed DOI

Shi Q., Zhou X., Yuan W., Su X., Neniškis A., Wei X., Taujenis L., Snarskis G., Ward J.S., Rissanen K., et al. Selective Formation of S4- and T-Symmetric Supramolecular Tetrahedral Cages and Helicates in Polar Media Assembled via Cooperative Action of Coordination and Hydrogen Bonds. J. Am. Chem. Soc. 2020;142:3658–3670. doi: 10.1021/jacs.0c00722. PubMed DOI

Shan Z., Wu X., Xu B., Hong Y.-L., Wu M., Wang Y., Nishiyama Y., Zhu J., Horike S., Kitagawa S., et al. Dynamic Transformation between Covalent Organic Frameworks and Discrete Organic Cages. J. Am. Chem. Soc. 2020;142:21279–21284. doi: 10.1021/jacs.0c11073. PubMed DOI

Pilgrim B.S., Champness N.R. Metal-Organic Frameworks and Metal-Organic Cages—A Perspective. ChemPlusChem. 2020;85:1842–1856. doi: 10.1002/cplu.202000408. PubMed DOI

Jiao J., Li Z., Qiao Z., Li X., Liu Y., Dong J., Jiang J., Cui Y. Design and self-assembly of hexahedral coordination cages for cascade reactions. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-018-06872-0. PubMed DOI PMC

Acharyya K., Mukherjee P.S. Organic Imine Cages: Molecular Marriage and Applications. Angew. Chem. Int. Ed. 2019;58:8640–8653. doi: 10.1002/anie.201900163. PubMed DOI

Marcarino M.O., Zanardi M.M., Cicetti S., Sarotti A.M. NMR Calculations with Quantum Methods: Development of New Tools for Structural Elucidation and Beyond. Acc. Chem. Res. 2020;53:1922–1932. doi: 10.1021/acs.accounts.0c00365. PubMed DOI

Ito T., Hayashi Y., Shimizu S., Shin J.-Y., Kobayashi N., Shinokubo H. Gram-Scale Synthesis of Nickel(II) Norcorrole: The Smallest Antiaromatic Porphyrinoid. Angew. Chem. Int. Ed. 2012;51:8542–8545. doi: 10.1002/anie.201204395. PubMed DOI

Yamashina M., Tanaka Y., Lavendomme R., Ronson T.K., Pittelkow M., Nitschke J.R. An antiaromatic-walled nanospace. Nat. Cell Biol. 2019;574:511–515. doi: 10.1038/s41586-019-1661-x. PubMed DOI

Zhang D., Ronson T.K., Zou Y.-Q., Nitschke J.R. Metal–organic cages for molecular separations. Nat. Rev. Chem. 2021;5:168–182. doi: 10.1038/s41570-020-00246-1. PubMed DOI

Dračínský M., Hurtado C.S., Masson E., Kaleta J. Stuffed pumpkins: Mechanochemical synthesis of host–guest complexes with cucurbit[7]uril. Chem. Commun. 2021;57:2132–2135. doi: 10.1039/D1CC00240F. PubMed DOI

Czernek J., Brus J. Theoretical predictions of the two-dimensional solid-state NMR spectra: A case study of the 13C–1H correlations in metergoline. Chem. Phys. Lett. 2013;586:56–60. doi: 10.1016/j.cplett.2013.09.015. DOI

Czernek J., Brus J. The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra. Chem. Phys. Lett. 2014;608:334–339. doi: 10.1016/j.cplett.2014.05.099. DOI

Hodgkinson P. NMR crystallography of molecular organics. Prog. Nucl. Magn. Reson. Spectrosc. 2020;118–119:10–53. doi: 10.1016/j.pnmrs.2020.03.001. PubMed DOI

Brus J., Czernek J., Kobera L., Urbanova M., Abbrent S., Husak M. Predicting the Crystal Structure of Decitabine by Powder NMR Crystallography: Influence of Long-Range Molecular Packing Symmetry on NMR Parameters. Cryst. Growth Des. 2016;16:7102–7111. doi: 10.1021/acs.cgd.6b01341. DOI

Takao K., Kai H., Yamada A., Fukushima Y., Komatsu D., Ogura A., Yoshida K. Total Syntheses of (+)-Aquatolide and Related Humulanolides. Angew. Chem. Int. Ed. 2019;58:9851–9855. doi: 10.1002/anie.201904404. PubMed DOI

Buevich A.V., Elyashberg M.E. Synergistic Combination of CASE Algorithms and DFT Chemical Shift Predictions: A Powerful Approach for Structure Elucidation, Verification, and Revision. J. Nat. Prod. 2016;79:3105–3116. doi: 10.1021/acs.jnatprod.6b00799. PubMed DOI

Pauli G.F., Niemitz M., Bisson J., Lodewyk M.W., Soldi C., Shaw J.T., Tantillo D.J., Saya J.M., Vos K., Kleinnijenhuis R.A., et al. Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving. J. Org. Chem. 2015;81:878–889. doi: 10.1021/acs.joc.5b02456. PubMed DOI PMC

Liu Y., Saurí J., Mevers E., Peczuh M.W., Hiemstra H., Clardy J., Martin G.E., Williamson R.T. Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science. 2017;356:eaam5349. doi: 10.1126/science.aam5349. PubMed DOI PMC

Rickhaus M., Jirasek M., Tejerina L., Gotfredsen H., Peeks M.D., Haver R., Jiang H.-W., Claridge T.D.W., Anderson H.L. Global aromaticity at the nanoscale. Nat. Chem. 2020;12:236–241. doi: 10.1038/s41557-019-0398-3. PubMed DOI PMC

Kudisch B., Maiuri M., Moretti L., Oviedo M.B., Wang L., Oblinsky D.G., Prud’Homme R.K., Wong B.M., McGill S.A., Scholes G.D. Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T. Proc. Natl. Acad. Sci. USA. 2020;117:11289–11298. doi: 10.1073/pnas.1918148117. PubMed DOI PMC

Lampkin B.J., Karadakov P.B., VanVeller B. Detailed Visualization of Aromaticity Using Isotropic Magnetic Shielding. Angew. Chem. Int. Ed. 2020;59:19275–19281. doi: 10.1002/anie.202008362. PubMed DOI

Conradie J., Foroutan-Nejad C., Ghosh A. Norcorrole as a Delocalized, Antiaromatic System. Sci. Rep. 2019;9:4852. doi: 10.1038/s41598-019-39972-y. PubMed DOI PMC

Karadakov P.B. Norcorrole: Aromaticity and Antiaromaticity in Contest. Org. Lett. 2020;22:8676–8680. doi: 10.1021/acs.orglett.0c03254. PubMed DOI

Zhang D., Ronson T.K., Nitschke J.R. Functional Capsules via Subcomponent Self-Assembly. Acc. Chem. Res. 2018;51:2423–2436. doi: 10.1021/acs.accounts.8b00303. PubMed DOI

Alvarez S. Polyhedra in (inorganic) chemistry. Dalton Trans. 2005:2209–2233. doi: 10.1039/b503582c. PubMed DOI

Czernek J., Brus J. On the predictions of the 11B solid state NMR parameters. Chem. Phys. Lett. 2016;655–656:66–70. doi: 10.1016/j.cplett.2016.05.027. DOI

Czernek J., Brus J. Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments. Int. J. Mol. Sci. 2020;21:7908. doi: 10.3390/ijms21217908. PubMed DOI PMC

Harvard Dataverse, V1; isosurface.txt [fileName] [(accessed on 24 March 2021)]; doi: 10.7910/DVN/JVVS2J. Available online: DOI

Hoffmann C.M. Geometric and Solid Modeling. 1st ed. Morgan Kaufmann Publishers; San Francisco, CA, USA: 1989.

Platzer G., Mayer M., Beier A., Brüschweiler S., Fuchs J.E., Engelhardt H., Geist L., Bader G., Schörghuber J., Lichtenecker R., et al. PI by NMR: Probing CH–π Interactions in Protein–Ligand Complexes by NMR Spectroscopy. Angew. Chem. 2020;132:14861–14868. doi: 10.1002/anie.202003732. PubMed DOI PMC

Cai X., Kataria R., Gibb B.C. Intrinsic and Extrinsic Control of the pKa of Thiol Guests inside Yoctoliter Containers. J. Am. Chem. Soc. 2020;142:8291–8298. doi: 10.1021/jacs.0c00907. PubMed DOI

Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI

Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI

Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16. Gaussian, Inc.; Wallingford, CT, USA: 2019. Revision C.01.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...