A Volumetric Analysis of the 1H NMR Chemical Shielding in Supramolecular Systems
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18011
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33805147
PubMed Central
PMC8036968
DOI
10.3390/ijms22073333
PII: ijms22073333
Knihovny.cz E-zdroje
- Klíčová slova
- B3LYP, GIAO, antiaromaticity, chemical shielding, proton NMR,
- MeSH
- acetonitrily chemie MeSH
- difrakce rentgenového záření MeSH
- izotopy uhlíku MeSH
- magnetická rezonanční spektroskopie metody MeSH
- makromolekulární látky MeSH
- nikl chemie MeSH
- normální rozdělení MeSH
- polycyklické sloučeniny chemie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- protony MeSH
- rozpouštědla chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetonitrile MeSH Prohlížeč
- acetonitrily MeSH
- Carbon-13 MeSH Prohlížeč
- coronene MeSH Prohlížeč
- izotopy uhlíku MeSH
- makromolekulární látky MeSH
- nikl MeSH
- polycyklické sloučeniny MeSH
- protony MeSH
- rozpouštědla MeSH
- železo MeSH
The liquid state NMR chemical shift of protons is a parameter frequently used to characterize host-guest complexes. Its theoretical counterpart, that is, the 1H NMR chemical shielding affected by the solvent (1H CS), may provide important insights into spatial arrangements of supramolecular systems, and it can also be reliably obtained for challenging cases of an aggregation of aromatic and antiaromatic molecules in solution. This computational analysis is performed for the complex of coronene and an antiaromatic model compound in acetonitrile by employing the GIAO-B3LYP-PCM approach combined with a saturated basis set. Predicted 1H CS values are used to generate volumetric data, whose properties are thoroughly investigated. The 1H CS isosurface, corresponding to a value of the proton chemical shift taken from a previous experimental study, is described. The presence of the 1H CS isosurface should be taken into account in deriving structural information about supramolecular hosts and their encapsulation of small molecules.
Zobrazit více v PubMed
Gao W.-X., Feng H.-J., Guo B.-B., Lu Y., Jin G.-X. Coordination-Directed Construction of Molecular Links. Chem. Rev. 2020;120:6288–6325. doi: 10.1021/acs.chemrev.0c00321. PubMed DOI
Percástegui E.G., Ronson T.K., Nitschke J.R. Design and Applications of Water-Soluble Coordination Cages. Chem. Rev. 2020;120:13480–13544. doi: 10.1021/acs.chemrev.0c00672. PubMed DOI PMC
Hardy M., Lützen A. Better Together: Functional Heterobimetallic Macrocyclic and Cage-like Assemblies. Chem. A Eur. J. 2020;26:13332–13346. doi: 10.1002/chem.202001602. PubMed DOI PMC
Ling Q.-H., Zhu J.-L., Qin Y., Xu L. Naphthalene diimide- and perylene diimide-based supramolecular cages. Mater. Chem. Front. 2020;4:3176–3189. doi: 10.1039/D0QM00540A. DOI
Bao S.-J., Xu Z.-M., Ju Y., Song Y.-L., Wang H., Niu Z., Li X., Braunstein P., Lang J.-P. The Covalent and Coordination Co-Driven Assembly of Supramolecular Octahedral Cages with Controllable Degree of Distortion. J. Am. Chem. Soc. 2020;142:13356–13361. doi: 10.1021/jacs.0c07014. PubMed DOI
Zhang D., Ronson T.K., Greenfield J.L., Brotin T., Berthault P., Léonce E., Zhu J.-L., Xu L., Nitschke J.R. Enantiopure [Cs+/Xe⊂Cryptophane]⊂FeII4L4 Hierarchical Superstructures. J. Am. Chem. Soc. 2019;141:8339–8345. doi: 10.1021/jacs.9b02866. PubMed DOI
Shi Q., Zhou X., Yuan W., Su X., Neniškis A., Wei X., Taujenis L., Snarskis G., Ward J.S., Rissanen K., et al. Selective Formation of S4- and T-Symmetric Supramolecular Tetrahedral Cages and Helicates in Polar Media Assembled via Cooperative Action of Coordination and Hydrogen Bonds. J. Am. Chem. Soc. 2020;142:3658–3670. doi: 10.1021/jacs.0c00722. PubMed DOI
Shan Z., Wu X., Xu B., Hong Y.-L., Wu M., Wang Y., Nishiyama Y., Zhu J., Horike S., Kitagawa S., et al. Dynamic Transformation between Covalent Organic Frameworks and Discrete Organic Cages. J. Am. Chem. Soc. 2020;142:21279–21284. doi: 10.1021/jacs.0c11073. PubMed DOI
Pilgrim B.S., Champness N.R. Metal-Organic Frameworks and Metal-Organic Cages—A Perspective. ChemPlusChem. 2020;85:1842–1856. doi: 10.1002/cplu.202000408. PubMed DOI
Jiao J., Li Z., Qiao Z., Li X., Liu Y., Dong J., Jiang J., Cui Y. Design and self-assembly of hexahedral coordination cages for cascade reactions. Nat. Commun. 2018;9:1–8. doi: 10.1038/s41467-018-06872-0. PubMed DOI PMC
Acharyya K., Mukherjee P.S. Organic Imine Cages: Molecular Marriage and Applications. Angew. Chem. Int. Ed. 2019;58:8640–8653. doi: 10.1002/anie.201900163. PubMed DOI
Marcarino M.O., Zanardi M.M., Cicetti S., Sarotti A.M. NMR Calculations with Quantum Methods: Development of New Tools for Structural Elucidation and Beyond. Acc. Chem. Res. 2020;53:1922–1932. doi: 10.1021/acs.accounts.0c00365. PubMed DOI
Ito T., Hayashi Y., Shimizu S., Shin J.-Y., Kobayashi N., Shinokubo H. Gram-Scale Synthesis of Nickel(II) Norcorrole: The Smallest Antiaromatic Porphyrinoid. Angew. Chem. Int. Ed. 2012;51:8542–8545. doi: 10.1002/anie.201204395. PubMed DOI
Yamashina M., Tanaka Y., Lavendomme R., Ronson T.K., Pittelkow M., Nitschke J.R. An antiaromatic-walled nanospace. Nat. Cell Biol. 2019;574:511–515. doi: 10.1038/s41586-019-1661-x. PubMed DOI
Zhang D., Ronson T.K., Zou Y.-Q., Nitschke J.R. Metal–organic cages for molecular separations. Nat. Rev. Chem. 2021;5:168–182. doi: 10.1038/s41570-020-00246-1. PubMed DOI
Dračínský M., Hurtado C.S., Masson E., Kaleta J. Stuffed pumpkins: Mechanochemical synthesis of host–guest complexes with cucurbit[7]uril. Chem. Commun. 2021;57:2132–2135. doi: 10.1039/D1CC00240F. PubMed DOI
Czernek J., Brus J. Theoretical predictions of the two-dimensional solid-state NMR spectra: A case study of the 13C–1H correlations in metergoline. Chem. Phys. Lett. 2013;586:56–60. doi: 10.1016/j.cplett.2013.09.015. DOI
Czernek J., Brus J. The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra. Chem. Phys. Lett. 2014;608:334–339. doi: 10.1016/j.cplett.2014.05.099. DOI
Hodgkinson P. NMR crystallography of molecular organics. Prog. Nucl. Magn. Reson. Spectrosc. 2020;118–119:10–53. doi: 10.1016/j.pnmrs.2020.03.001. PubMed DOI
Brus J., Czernek J., Kobera L., Urbanova M., Abbrent S., Husak M. Predicting the Crystal Structure of Decitabine by Powder NMR Crystallography: Influence of Long-Range Molecular Packing Symmetry on NMR Parameters. Cryst. Growth Des. 2016;16:7102–7111. doi: 10.1021/acs.cgd.6b01341. DOI
Takao K., Kai H., Yamada A., Fukushima Y., Komatsu D., Ogura A., Yoshida K. Total Syntheses of (+)-Aquatolide and Related Humulanolides. Angew. Chem. Int. Ed. 2019;58:9851–9855. doi: 10.1002/anie.201904404. PubMed DOI
Buevich A.V., Elyashberg M.E. Synergistic Combination of CASE Algorithms and DFT Chemical Shift Predictions: A Powerful Approach for Structure Elucidation, Verification, and Revision. J. Nat. Prod. 2016;79:3105–3116. doi: 10.1021/acs.jnatprod.6b00799. PubMed DOI
Pauli G.F., Niemitz M., Bisson J., Lodewyk M.W., Soldi C., Shaw J.T., Tantillo D.J., Saya J.M., Vos K., Kleinnijenhuis R.A., et al. Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving. J. Org. Chem. 2015;81:878–889. doi: 10.1021/acs.joc.5b02456. PubMed DOI PMC
Liu Y., Saurí J., Mevers E., Peczuh M.W., Hiemstra H., Clardy J., Martin G.E., Williamson R.T. Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science. 2017;356:eaam5349. doi: 10.1126/science.aam5349. PubMed DOI PMC
Rickhaus M., Jirasek M., Tejerina L., Gotfredsen H., Peeks M.D., Haver R., Jiang H.-W., Claridge T.D.W., Anderson H.L. Global aromaticity at the nanoscale. Nat. Chem. 2020;12:236–241. doi: 10.1038/s41557-019-0398-3. PubMed DOI PMC
Kudisch B., Maiuri M., Moretti L., Oviedo M.B., Wang L., Oblinsky D.G., Prud’Homme R.K., Wong B.M., McGill S.A., Scholes G.D. Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T. Proc. Natl. Acad. Sci. USA. 2020;117:11289–11298. doi: 10.1073/pnas.1918148117. PubMed DOI PMC
Lampkin B.J., Karadakov P.B., VanVeller B. Detailed Visualization of Aromaticity Using Isotropic Magnetic Shielding. Angew. Chem. Int. Ed. 2020;59:19275–19281. doi: 10.1002/anie.202008362. PubMed DOI
Conradie J., Foroutan-Nejad C., Ghosh A. Norcorrole as a Delocalized, Antiaromatic System. Sci. Rep. 2019;9:4852. doi: 10.1038/s41598-019-39972-y. PubMed DOI PMC
Karadakov P.B. Norcorrole: Aromaticity and Antiaromaticity in Contest. Org. Lett. 2020;22:8676–8680. doi: 10.1021/acs.orglett.0c03254. PubMed DOI
Zhang D., Ronson T.K., Nitschke J.R. Functional Capsules via Subcomponent Self-Assembly. Acc. Chem. Res. 2018;51:2423–2436. doi: 10.1021/acs.accounts.8b00303. PubMed DOI
Alvarez S. Polyhedra in (inorganic) chemistry. Dalton Trans. 2005:2209–2233. doi: 10.1039/b503582c. PubMed DOI
Czernek J., Brus J. On the predictions of the 11B solid state NMR parameters. Chem. Phys. Lett. 2016;655–656:66–70. doi: 10.1016/j.cplett.2016.05.027. DOI
Czernek J., Brus J. Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments. Int. J. Mol. Sci. 2020;21:7908. doi: 10.3390/ijms21217908. PubMed DOI PMC
Harvard Dataverse, V1; isosurface.txt [fileName] [(accessed on 24 March 2021)]; doi: 10.7910/DVN/JVVS2J. Available online: DOI
Hoffmann C.M. Geometric and Solid Modeling. 1st ed. Morgan Kaufmann Publishers; San Francisco, CA, USA: 1989.
Platzer G., Mayer M., Beier A., Brüschweiler S., Fuchs J.E., Engelhardt H., Geist L., Bader G., Schörghuber J., Lichtenecker R., et al. PI by NMR: Probing CH–π Interactions in Protein–Ligand Complexes by NMR Spectroscopy. Angew. Chem. 2020;132:14861–14868. doi: 10.1002/anie.202003732. PubMed DOI PMC
Cai X., Kataria R., Gibb B.C. Intrinsic and Extrinsic Control of the pKa of Thiol Guests inside Yoctoliter Containers. J. Am. Chem. Soc. 2020;142:8291–8298. doi: 10.1021/jacs.0c00907. PubMed DOI
Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI
Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI
Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16. Gaussian, Inc.; Wallingford, CT, USA: 2019. Revision C.01.