Norcorrole as a Delocalized, Antiaromatic System
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
262229
Norges Forskningsråd (Research Council of Norway)
PubMed
30890733
PubMed Central
PMC6425022
DOI
10.1038/s41598-019-39972-y
PII: 10.1038/s41598-019-39972-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nickel norcorrole provides an unusual example of a molecule that is strongly antiaromatic according to the magnetic criterion, but which exhibits, according to high-quality DFT calculations, a symmetric, delocalized structure with no difference in bond length between adjacent Cmeso-Cα bonds. A fragment molecular orbital analysis suggests that these discordant observations are a manifestation of the high stability of the dipyrrin fragments, which retain their electronic and structural integrity even as part of the norcorrole ring system.
Department of Chemistry UiT The Arctic University of Norway 9037 Tromsø Norway
Department of Chemistry University of the Free State 9300 Bloemfontein Republic of South Africa
Zobrazit více v PubMed
Ghosh, A., Wasbotten, I. H., Davis, W. & Swarts, J. C. Norcorrole and dihydronorcorrole: A predictive quantum chemical study. Eur. J. Inorg. Chem. 4479–4485 (2005).
Cissell JA, Vaid TP, Yap GP. The Doubly Oxidized, Antiaromatic Tetraphenylporphyrin Complex [Li(TPP)][BF4] Org. Lett. 2006;8:2401–2404. doi: 10.1021/ol060772l. PubMed DOI
Pawlicki M, Latos-Grażyński L. Aromaticity Switching in Porphyrinoids. Chem. Asian J. 2015;10:1438–1451. doi: 10.1002/asia.201500170. PubMed DOI
Reddy BK, Basavarajappa A, Ambhore MD, Anand VG. Isophlorinoids: The Antiaromatic Congeners of Porphyrinoids. Chem. Rev. 2017;117:3420–3443. doi: 10.1021/acs.chemrev.6b00544. PubMed DOI
Bröring M, Köhler S, Kleeberg C. Norcorrole: Observation of the Smallest Porphyrin Variant with a N4 Core. Angew. Chem. Int. Ed. 2008;47:5658–5660. doi: 10.1002/anie.200801196. PubMed DOI
Ito T, et al. Gram‐Scale Synthesis of Nickel(II) Norcorrole: The Smallest Antiaromatic Porphyrinoid. Angew. Chem. Int. Ed. 2012;51:8542–8545. doi: 10.1002/anie.201204395. PubMed DOI
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Miehlich B, Savin A, Stoll H, Preuss H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989;157:200–206. doi: 10.1016/0009-2614(89)87234-3. DOI
Grimme S, Anthony J, Ehrlich S, Krieg HA. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Yonezawa T, Shafie SA, Hiroto S, Shinokubo H. Shaping Antiaromatic π-Systems by Metalation: Synthesis of a Bowl-Shaped Antiaromatic Palladium Norcorrole. Angew. Chem. Int. Ed. 2017;56:11822–11825. doi: 10.1002/anie.201706134. PubMed DOI
Yoshida T, Sakamaki D, Seki S, Shinokubo H. Enhancing the low-energy absorption band and charge mobility of antiaromatic NiII norcorroles by their substituent effects. Chem. Commun. 2017;53:1112. doi: 10.1039/C6CC09444A. PubMed DOI
Nozawa R, et al. Stacked antiaromatic porphyrins. Nat. Comm. 2016;7:13620. doi: 10.1038/ncomms13620. PubMed DOI PMC
Kawashima H, Hiroto S, Shinokubo H. Acid-Mediated Migration of Bromide in an Antiaromatic Porphyrinoid: Preparation of Two Regioisomeric Ni(II) Bromonorcorroles. J. Org. Chem. 2017;82:10425–10432. doi: 10.1021/acs.joc.7b01899. PubMed DOI
Nozawa R, Yamamoto K, Shin J, Hiroto S, Shinokubo H. Regioselective Nucleophilic Functionalization of Antiaromatic Nickel(II) Norcorroles. Angew. Chem. Int. Ed. 2015;54:8454–8457. doi: 10.1002/anie.201502666. PubMed DOI
Deng Z, Li X, Stępień M, Chmielewski PJ. Nitration of Norcorrolatonickel(II): First Observation of a Diatropic Current in a System Comprising a Norcorrole Ring. Chem. Eur. J. 2016;22:4231–4246. doi: 10.1002/chem.201504584. PubMed DOI
Yoshida T, Shinokubo H. Direct amination of the antiaromatic NiII norcorrole. Mater. Chem. Front. 2017;1:1853–1857. doi: 10.1039/C7QM00176B. DOI
Fliegl H, Sundholm D. Aromatic Pathways of Porphins, Chlorins, and Bacteriochlorins. J. Org. Chem. 2012;77:3408–3414. doi: 10.1021/jo300182b. PubMed DOI
Ghosh, A., Larsen, S., Conradie, J. & Foroutan-Nejad, C. Local versus global aromaticity in azuliporphyrin and benziporphyrin derivatives. Org. Biomol. Chem. 16, 7964–7970 (2018). PubMed
Foroutan-Nejad C, Larsen S, Conradie J, Ghosh A. Isocorroles as Homoaromatic NIR-Absorbing Chromophores: A First Quantum Chemical Study. Sci. Rep. 2018;8:11952. doi: 10.1038/s41598-018-29819-3. PubMed DOI PMC
Foroutan-Nejad C. Interatomic Magnetizability: A QTAIM-Based Approach toward Deciphering Magnetic Aromaticity. J. Phys. Chem. A. 2011;115:12555–12560. doi: 10.1021/jp202901f. PubMed DOI
Foroutan-Nejad C. Al42−: the anion–π interactions and aromaticity in the presence of counter ions. Phys. Chem. Chem. Phys. 2012;14:9738. doi: 10.1039/c2cp40511c. PubMed DOI
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, New York (1990).
Foroutan-Nejad C, Shahbazian S, Marek R. Toward a Consistent Interpretation of the QTAIM: Tortuous Link between Chemical Bonds, Interactions, and Bond/Line Paths. Chem. Eur. J. 2014;20:10140–10152. doi: 10.1002/chem.201402177. PubMed DOI
Bader RFW, Keith TA. Properties of atoms in molecules: Magnetic susceptibilities. J. Chem. Phys. 1993;99:3683–3693. doi: 10.1063/1.466166. DOI
Bader RFW, Keith TA. Use of electron charge and current distributions in the determination of atomic contributions to magnetic properties. Int. J. Quantum Chem. 1996;60:373–379. doi: 10.1002/(SICI)1097-461X(1996)60:1<373::AID-QUA36>3.0.CO;2-C. DOI
Badri Z, et al. All-Metal Aromaticity: Revisiting the Ring Current Model among Transition Metal Clusters. J. Chem. Theory Comput. 2013;9:4789–4796. doi: 10.1021/ct4007184. PubMed DOI
Foroutan-Nejad C. Is NICS a reliable aromaticity index for transition metal clusters? Theor. Chem. Acc. 2015;134:8. doi: 10.1007/s00214-015-1617-7. DOI
Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005;105:3842–3888. doi: 10.1021/cr030088+. PubMed DOI
Heilbronner E. Why do some molecules have symmetry different from that expected? J. Chem. Educ. 1989;66:471–478. doi: 10.1021/ed066p471. DOI
Shaik S, Shurki A, Danovich D, Hiberty PC. A Different Story of π-Delocalization – The Distortivity of π-Electrons and Its Chemical Manifestations. Chem. Rev. 2001;101:1501–1539. doi: 10.1021/cr990363l. PubMed DOI
Ceulemans, A., Lijnen, E., Fowler, P. W., Mallion, R. B. & Pisanski, T. Graph theory and the Jahn–Teller theorem. Proc. Roy. Soc. A 1–19 (2011).
Cho S, et al. Defining Spectroscopic Features of Heteroannulenic Antiaromatic Porphyrinoids. J. Phys. Chem. Lett. 2010;1:895–900. doi: 10.1021/jz100039n. DOI
Fujii S, et al. Highly-conducting molecular circuits based on antiaromaticity. Nat. Commun. 2017;8:15984. doi: 10.1038/ncomms15984. PubMed DOI PMC
te Velde G, et al. Chemistry with ADF. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI
Guerra CF, Snijders JG, te Velde G, Baerends EJ. Towards an order-N DFT method. Theor. Chem. Acc. 1998;99:391–403.
Frisch, M. J. et al. Gaussian 09, Gaussian, Inc., Wallingford CT (2013).
Keith, T. A. AIMAll, Gristmill Software: Overland Park KS, USA (2017).
Keith TA, Bader RFW. Calculation of magnetic response properties using atoms in molecules. Chem. Phys. Lett. 1992;194:1–8. doi: 10.1016/0009-2614(92)85733-Q. DOI
Keith TA, Bader RFW. Calculation of magnetic response properties using a continuous set of gauge transformations. Chem. Phys. Lett. 1993;210:223–231. doi: 10.1016/0009-2614(93)89127-4. DOI
Keith TA, Bader RFW. Topological analysis of magnetically induced molecular current distributions. J. Chem. Phys. 1993;99:3669–3682. doi: 10.1063/1.466165. DOI
Keith TA. Calculation of magnetizabilities using GIAO current density distributions. Chem. Phys. 1996;213:123–132. doi: 10.1016/S0301-0104(96)00272-8. DOI
Keith TA, Bader RFW. Properties of atoms in molecules: nuclear magnetic shielding. Can. J. Chem. 1996;74:185–200. doi: 10.1139/v96-022. DOI
A Volumetric Analysis of the 1H NMR Chemical Shielding in Supramolecular Systems