Norcorrole as a Delocalized, Antiaromatic System

. 2019 Mar 19 ; 9 (1) : 4852. [epub] 20190319

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30890733

Grantová podpora
262229 Norges Forskningsråd (Research Council of Norway)

Odkazy

PubMed 30890733
PubMed Central PMC6425022
DOI 10.1038/s41598-019-39972-y
PII: 10.1038/s41598-019-39972-y
Knihovny.cz E-zdroje

Nickel norcorrole provides an unusual example of a molecule that is strongly antiaromatic according to the magnetic criterion, but which exhibits, according to high-quality DFT calculations, a symmetric, delocalized structure with no difference in bond length between adjacent Cmeso-Cα bonds. A fragment molecular orbital analysis suggests that these discordant observations are a manifestation of the high stability of the dipyrrin fragments, which retain their electronic and structural integrity even as part of the norcorrole ring system.

Zobrazit více v PubMed

Ghosh, A., Wasbotten, I. H., Davis, W. & Swarts, J. C. Norcorrole and dihydronorcorrole: A predictive quantum chemical study. Eur. J. Inorg. Chem. 4479–4485 (2005).

Cissell JA, Vaid TP, Yap GP. The Doubly Oxidized, Antiaromatic Tetraphenylporphyrin Complex [Li(TPP)][BF4] Org. Lett. 2006;8:2401–2404. doi: 10.1021/ol060772l. PubMed DOI

Pawlicki M, Latos-Grażyński L. Aromaticity Switching in Porphyrinoids. Chem. Asian J. 2015;10:1438–1451. doi: 10.1002/asia.201500170. PubMed DOI

Reddy BK, Basavarajappa A, Ambhore MD, Anand VG. Isophlorinoids: The Antiaromatic Congeners of Porphyrinoids. Chem. Rev. 2017;117:3420–3443. doi: 10.1021/acs.chemrev.6b00544. PubMed DOI

Bröring M, Köhler S, Kleeberg C. Norcorrole: Observation of the Smallest Porphyrin Variant with a N4 Core. Angew. Chem. Int. Ed. 2008;47:5658–5660. doi: 10.1002/anie.200801196. PubMed DOI

Ito T, et al. Gram‐Scale Synthesis of Nickel(II) Norcorrole: The Smallest Antiaromatic Porphyrinoid. Angew. Chem. Int. Ed. 2012;51:8542–8545. doi: 10.1002/anie.201204395. PubMed DOI

Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Miehlich B, Savin A, Stoll H, Preuss H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989;157:200–206. doi: 10.1016/0009-2614(89)87234-3. DOI

Grimme S, Anthony J, Ehrlich S, Krieg HA. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Yonezawa T, Shafie SA, Hiroto S, Shinokubo H. Shaping Antiaromatic π-Systems by Metalation: Synthesis of a Bowl-Shaped Antiaromatic Palladium Norcorrole. Angew. Chem. Int. Ed. 2017;56:11822–11825. doi: 10.1002/anie.201706134. PubMed DOI

Yoshida T, Sakamaki D, Seki S, Shinokubo H. Enhancing the low-energy absorption band and charge mobility of antiaromatic NiII norcorroles by their substituent effects. Chem. Commun. 2017;53:1112. doi: 10.1039/C6CC09444A. PubMed DOI

Nozawa R, et al. Stacked antiaromatic porphyrins. Nat. Comm. 2016;7:13620. doi: 10.1038/ncomms13620. PubMed DOI PMC

Kawashima H, Hiroto S, Shinokubo H. Acid-Mediated Migration of Bromide in an Antiaromatic Porphyrinoid: Preparation of Two Regioisomeric Ni(II) Bromonorcorroles. J. Org. Chem. 2017;82:10425–10432. doi: 10.1021/acs.joc.7b01899. PubMed DOI

Nozawa R, Yamamoto K, Shin J, Hiroto S, Shinokubo H. Regioselective Nucleophilic Functionalization of Antiaromatic Nickel(II) Norcorroles. Angew. Chem. Int. Ed. 2015;54:8454–8457. doi: 10.1002/anie.201502666. PubMed DOI

Deng Z, Li X, Stępień M, Chmielewski PJ. Nitration of Norcorrolatonickel(II): First Observation of a Diatropic Current in a System Comprising a Norcorrole Ring. Chem. Eur. J. 2016;22:4231–4246. doi: 10.1002/chem.201504584. PubMed DOI

Yoshida T, Shinokubo H. Direct amination of the antiaromatic NiII norcorrole. Mater. Chem. Front. 2017;1:1853–1857. doi: 10.1039/C7QM00176B. DOI

Fliegl H, Sundholm D. Aromatic Pathways of Porphins, Chlorins, and Bacteriochlorins. J. Org. Chem. 2012;77:3408–3414. doi: 10.1021/jo300182b. PubMed DOI

Ghosh, A., Larsen, S., Conradie, J. & Foroutan-Nejad, C. Local versus global aromaticity in azuliporphyrin and benziporphyrin derivatives. Org. Biomol. Chem. 16, 7964–7970 (2018). PubMed

Foroutan-Nejad C, Larsen S, Conradie J, Ghosh A. Isocorroles as Homoaromatic NIR-Absorbing Chromophores: A First Quantum Chemical Study. Sci. Rep. 2018;8:11952. doi: 10.1038/s41598-018-29819-3. PubMed DOI PMC

Foroutan-Nejad C. Interatomic Magnetizability: A QTAIM-Based Approach toward Deciphering Magnetic Aromaticity. J. Phys. Chem. A. 2011;115:12555–12560. doi: 10.1021/jp202901f. PubMed DOI

Foroutan-Nejad C. Al42−: the anion–π interactions and aromaticity in the presence of counter ions. Phys. Chem. Chem. Phys. 2012;14:9738. doi: 10.1039/c2cp40511c. PubMed DOI

Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, New York (1990).

Foroutan-Nejad C, Shahbazian S, Marek R. Toward a Consistent Interpretation of the QTAIM: Tortuous Link between Chemical Bonds, Interactions, and Bond/Line Paths. Chem. Eur. J. 2014;20:10140–10152. doi: 10.1002/chem.201402177. PubMed DOI

Bader RFW, Keith TA. Properties of atoms in molecules: Magnetic susceptibilities. J. Chem. Phys. 1993;99:3683–3693. doi: 10.1063/1.466166. DOI

Bader RFW, Keith TA. Use of electron charge and current distributions in the determination of atomic contributions to magnetic properties. Int. J. Quantum Chem. 1996;60:373–379. doi: 10.1002/(SICI)1097-461X(1996)60:1<373::AID-QUA36>3.0.CO;2-C. DOI

Badri Z, et al. All-Metal Aromaticity: Revisiting the Ring Current Model among Transition Metal Clusters. J. Chem. Theory Comput. 2013;9:4789–4796. doi: 10.1021/ct4007184. PubMed DOI

Foroutan-Nejad C. Is NICS a reliable aromaticity index for transition metal clusters? Theor. Chem. Acc. 2015;134:8. doi: 10.1007/s00214-015-1617-7. DOI

Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005;105:3842–3888. doi: 10.1021/cr030088+. PubMed DOI

Heilbronner E. Why do some molecules have symmetry different from that expected? J. Chem. Educ. 1989;66:471–478. doi: 10.1021/ed066p471. DOI

Shaik S, Shurki A, Danovich D, Hiberty PC. A Different Story of π-Delocalization – The Distortivity of π-Electrons and Its Chemical Manifestations. Chem. Rev. 2001;101:1501–1539. doi: 10.1021/cr990363l. PubMed DOI

Ceulemans, A., Lijnen, E., Fowler, P. W., Mallion, R. B. & Pisanski, T. Graph theory and the Jahn–Teller theorem. Proc. Roy. Soc. A 1–19 (2011).

Cho S, et al. Defining Spectroscopic Features of Heteroannulenic Antiaromatic Porphyrinoids. J. Phys. Chem. Lett. 2010;1:895–900. doi: 10.1021/jz100039n. DOI

Fujii S, et al. Highly-conducting molecular circuits based on antiaromaticity. Nat. Commun. 2017;8:15984. doi: 10.1038/ncomms15984. PubMed DOI PMC

te Velde G, et al. Chemistry with ADF. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI

Guerra CF, Snijders JG, te Velde G, Baerends EJ. Towards an order-N DFT method. Theor. Chem. Acc. 1998;99:391–403.

Frisch, M. J. et al. Gaussian 09, Gaussian, Inc., Wallingford CT (2013).

Keith, T. A. AIMAll, Gristmill Software: Overland Park KS, USA (2017).

Keith TA, Bader RFW. Calculation of magnetic response properties using atoms in molecules. Chem. Phys. Lett. 1992;194:1–8. doi: 10.1016/0009-2614(92)85733-Q. DOI

Keith TA, Bader RFW. Calculation of magnetic response properties using a continuous set of gauge transformations. Chem. Phys. Lett. 1993;210:223–231. doi: 10.1016/0009-2614(93)89127-4. DOI

Keith TA, Bader RFW. Topological analysis of magnetically induced molecular current distributions. J. Chem. Phys. 1993;99:3669–3682. doi: 10.1063/1.466165. DOI

Keith TA. Calculation of magnetizabilities using GIAO current density distributions. Chem. Phys. 1996;213:123–132. doi: 10.1016/S0301-0104(96)00272-8. DOI

Keith TA, Bader RFW. Properties of atoms in molecules: nuclear magnetic shielding. Can. J. Chem. 1996;74:185–200. doi: 10.1139/v96-022. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Volumetric Analysis of the 1H NMR Chemical Shielding in Supramolecular Systems

. 2021 Mar 24 ; 22 (7) : . [epub] 20210324

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...