Highly-conducting molecular circuits based on antiaromaticity

. 2017 Jul 19 ; 8 () : 15984. [epub] 20170719

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28722006

Aromaticity is a fundamental concept in chemistry. It is described by Hückel's rule that states that a cyclic planar π-system is aromatic when it shares 4n+2 π-electrons and antiaromatic when it possesses 4n π-electrons. Antiaromatic compounds are predicted to exhibit remarkable charge transport properties and high redox activities. However, it has so far only been possible to measure compounds with reduced aromaticity but not antiaromatic species due to their energetic instability. Here, we address these issues by investigating the single-molecule charge transport properties of a genuinely antiaromatic compound, showing that antiaromaticity results in an order of magnitude increase in conductance compared with the aromatic counterpart. Single-molecule current-voltage measurements and ab initio transport calculations reveal that this results from a reduced energy gap and a frontier molecular resonance closer to the Fermi level in the antiaromatic species. The conductance of the antiaromatic complex is further modulated electrochemically, demonstrating its potential as a high-conductance transistor.

Zobrazit více v PubMed

Schleyer P. V. R. Introduction:  aromaticity. Chem. Rev. 101, 1115–1118 (2001). PubMed

Randić M. Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3606 (2003). PubMed

Krygowski T. M., Szatylowicz H., Stasyuk O. A., Dominikowska J. & Palusiak M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem. Rev. 114, 6383–6422 (2014). PubMed

Hückel E. Quantentheoretische Beiträge zum Benzolproblem. Z. Physik 70, 204–286 (1931).

Breslow R. Antiaromaticity. Acc. Chem. Res. 6, 393–398 (1973).

De Proft F. & Geerlings P. Conceptual and computational DFT in the study of aromaticity. Chem. Rev. 101, 1451–1464 (2001). PubMed

Aihara J.-I. Reduced HOMO–LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103, 7487–7495 (1999).

Anthony J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028–5048 (2006). PubMed

Jurow M., Schuckman A. E., Batteas J. D. & Drain C. M. Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 254, 2297–2310 (2010). PubMed PMC

Wang C., Dong H., Hu W., Liu Y. & Zhu D. Semiconducting pi-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208–2267 (2012). PubMed

Bendikov M., Wudl F. & Perepichka D. F. Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives:  the brick and mortar of organic electronics. Chem. Rev. 104, 4891–4946 (2004). PubMed

Breslow R., Murayama D. R., Murahashi S. & Grubbs R. Quantitative assessment of the antiaromatic city of cyclobutadiene by electrochemical studies on quinone derivatives. J. Am. Chem. Soc. 95, 6688–6699 (1973).

Breslow R. & Foss F. W. Jr Charge transport in nanoscale aromatic and antiaromatic systems. J. Phys. Condens. Matter 20, 374104 (2008).

Reed M. A. Conductance of a molecular junction. Science 278, 252–254 (1997).

Smit R. H. M. et al.. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002). PubMed

Xu B. & Tao N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003). PubMed

Chen W. et al.. Aromaticity decreases single-molecule junction conductance. J. Am. Chem. Soc. 136, 918–920 (2014). PubMed

Xie Z., Ji X.-L., Song Y., Wei M.-Z. & Wang C.-K. More aromatic molecular junction has lower conductance. Chem. Phys. Lett. 639, 131–134 (2015).

Mahendran A., Gopinath P. & Breslow R. Single molecule conductance of aromatic, nonaromatic, and partially antiaromatic systems. Tetrahedron Lett. 56, 4833–4835 (2015).

Ito T. et al.. Gram-scale synthesis of nickel(II) norcorrole: the smallest antiaromatic porphyrinoid. Angew. Chem. Int. Ed. Engl. 51, 8542–8545 (2012). PubMed

Shin J. Y., Yamada T., Yoshikawa H., Awaga K. & Shinokubo H. An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. Angew. Chem. Int. Ed. Engl. 53, 3096–3101 (2014). PubMed

Nozawa R., Yamamoto K., Shin J. Y., Hiroto S. & Shinokubo H. Regioselective nucleophilic functionalization of antiaromatic nickel(II) norcorroles. Angew. Chem. Int. Ed. Engl. 54, 8454–8457 (2015). PubMed

Park Y. S. et al.. Contact chemistry and single-molecule conductance:  a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007). PubMed

Sedghi G. et al.. Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat. Nanotechnol. 6, 517–523 (2011). PubMed

Liu Z. F. et al.. Control of single-molecule junction conductance of porphyrins via a transition-metal center. Nano Lett. 14, 5365–5370 (2014). PubMed

Perrin M. L. et al.. Influence of the chemical structure on the stability and conductance of porphyrin single-molecule junctions. Angew. Chem. Int. Ed. Engl. 50, 11223–11226 (2011). PubMed

Maji S. & Sarkar S. HOMO based two electrons and one-electron oxidation in planar and nonplanar methoxy-substituted nickel tetraphenylporphyrins. Inorg. Chim. Acta 363, 2778–2785 (2010).

Tu Y. J. et al.. Intriguing electrochemical behavior of free base porphyrins: effect of porphyrin-meso-phenyl interaction controlled by position of substituents on meso-phenyls. J. Phys. Chem. A 116, 1632–1637 (2012). PubMed

Neaton J. B., Hybertsen M. S. & Louie S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006). PubMed

Quek S. Y. et al.. Amine−gold linked single-molecule circuits:  experiment and theory. Nano Lett. 7, 3477–3482 (2007). PubMed

Toher C. & Sanvito S. Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions. Phys. Rev. B 77, 155402 (2008).

Flores F., Ortega J. & Vazquez H. Modelling energy level alignment at organic interfaces and density functional theory. Phys. Chem. Chem. Phys. 11, 8658–8675 (2009). PubMed

Strange M., Rostgaard C., Häkkinen H. & Thygesen K. S. Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys. Rev. B 83, 115108 (2011).

Kim Y., Pietsch T., Erbe A., Belzig W. & Scheer E. Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011). PubMed

Cuevas J. C. & Scheer E. Molecular Electronics: An Introduction to Theory and Experiment World Scientific Publishing Co. Pte. Ltd (2010).

Komoto Y. et al.. Resolving metal-molecule interfaces at single-molecule junctions. Sci. Rep. 6, 26606 (2016). PubMed PMC

Schneebeli S. et al.. The electrical properties of biphenylenes. Org. Lett. 12, 4114–4117 (2010). PubMed

Baghernejad M. et al.. Electrochemical control of single-molecule conductance by Fermi-level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014). PubMed

Zhou X. S. et al.. Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J. Am. Chem. Soc. 133, 7509–7516 (2011). PubMed

Osorio H. M. et al.. Electrochemical single-molecule transistors with optimized gate coupling. J. Am. Chem. Soc. 137, 14319–14328 (2015). PubMed

Haiss W. et al.. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294–15295 (2003). PubMed

Chappell S. et al.. Evidence for a hopping mechanism in metal | single molecule | metal junctions involving conjugated metal–terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy)2]2+ (M=Co and Fe; pyterpy=4'-(pyridin-4-yl)-2,2':6',2''-terpyridine) in ionic liquid. Faraday Discuss. 193, 113–131 (2016). PubMed

Pobelov I. V., Li Z. & Wandlowski T. Electrolyte gating in redox-active tunneling junctions—an electrochemical stm approach. J. Am. Chem. Soc. 130, 16045–16054 (2008). PubMed

Gryko D. T., Clausen C. & Lindsey J. S. Thiol-derivatized porphyrins for attachment to electroactive surfaces. J. Org. Chem. 64, 8635–8647 (1999).

Tiecco M., Tingoli M., Testaferri L., Chianelli D. & Maiolo F. Selective dealkylation of bis[alkylthio]benzenes: elimination-substitution competition with methoxide and methanethiolate ions in hexamethylphosphoric triamide. Synthesis (1982) 478–480 (1982).

Kuroda M. & Nishino T. Preparation of tips coated with poly(dimethylsiloxane) for scanning tunneling microscopy in aqueous solutions. Rev. Sci. Instrum. 82, 063707 (2011). PubMed

Soler J. M. et al.. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745 (2002).

Brandbyge M., Mozos J.-L., Ordejón P., Taylor J. & Stokbro K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

Paulsson M. & Brandbyge M. Transmission eigenchannels from nonequilibrium Green’s functions. Phys. Rev. B 76, 115117 (2007).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...