• This record comes from PubMed

Magnetic Diversity in Heteroisocorroles: Aromatic Pathways in 10-Heteroatom-Substituted Isocorroles

. 2018 Nov 30 ; 3 (11) : 15865-15869. [epub] 20181121

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

A recent study on magnetically induced currents in 10-isocorrole derivatives indicated that both the free-base and metal-complexed forms of the unsubstituted macrocycle are homoaromatic. Furthermore, depending on the substituents at the 10-position, the aromatic character was found to swing between substantially homoaromatic to substantially antihomoaromatic. Heteroisocorroles, in which the saturated 10-position has been replaced by a heteroatom-containing group X, are predicted to exhibit even more dramatic variations in aromatic character, ranging from strongly aromatic (X = O, NH, PH, and S) to strongly antiaromatic (X = BH and CO). Interestingly, the experimentally studied X = SiMe2 case does not appear to sustain a significant global ring current.

See more in PubMed

Pomarico G.; Xiao X.; Nardis S.; Paolesse R.; Fronczek F. R.; Smith K. M.; Fang Y.; Ou Z.; Kadish K. M. Synthesis and Characterization of Free-Base, Copper, and Nickel Isocorroles. Inorg. Chem. 2010, 49, 5766–5774. 10.1021/ic100730j. PubMed DOI PMC

Costa R.; III Geier G. R.; Ziegler C. J. Structure and Spectroscopic Characterization of Free Base and Metal Complexes of 5,5-Dimethyl-10,15-Bis(Pentafluorophenyl)Isocorrole. Dalton Trans. 2011, 40, 4384–4386. 10.1039/c1dt10112a. PubMed DOI

Hoffmann M.; Cordes B.; Kleeberg C.; Schweyen P.; Wolfram B.; Bröring M. Template Synthesis of Alkyl-Substituted Metal Isocorroles. Eur. J. Inorg. Chem. 2016, 2016, 3076–3085. 10.1002/ejic.201600419718. DOI

Thomas K. E.; Beavers C. M.; Gagnon K. J.; Ghosh A. β-Octabromo- and β-Octakis(Trifluoromethyl)Isocorroles: New Sterically Constrained Macrocyclic Ligands. ChemistryOpen 2017, 6, 402–409. 10.1002/open.201700035. PubMed DOI PMC

Sakow D.; Böker B.; Brandhorst K.; Burghaus O.; Bröring M. 10-Heterocorroles: Ring-Contracted Porphyrinoids with Fine-Tuned Aromatic and Metal-Binding Properties. Angew. Chem. Int. Ed. 2013, 52, 4912–4915. 10.1002/anie.201300757. PubMed DOI

Umasekhar B.; Shetti V. S.; Ravikanth M. Heterocorroles: Corrole Analogues Containing Heteroatom(s) in the Core or at a Meso-Position. RSC Adv. 2018, 8, 21100–21132. 10.1039/C8RA03669A. PubMed DOI PMC

Fitzgerald J. P.; Haggerty B. S.; Rheingold A. L.; May L.; Brewer G. A. Iron Octaethyltetraazaporphyrins: Synthesis, Characterization, Coordination Chemistry, and Comparisons to Related Iron Porphyrins and Phthalocyanines. Inorg. Chem. 1992, 31, 2006–2013. 10.1021/ic00037a007. DOI

Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem. Rev. 2017, 117, 3798–3881. 10.1021/acs.chemrev.6b00590. PubMed DOI

Bröring M.; Köhler S.; Pietzonka C. Pseudohalogenido Complexes of Iron-2,2′-Bidipyrrins. J. Porphyr. Phthalocyanines 2012, 16, 641–650. 10.1142/S1088424612500538. DOI

Sakow D.; Baabe D.; Böker B.; Burghaus O.; Funk M.; Kleeberg C.; Menzel D.; Pietzonka C.; Bröring M. Iron 10-Thiacorroles: Bioinspired Iron(III) Complexes with an Intermediate Spin (S=3/2) Ground State. Chem. - Eur. J. 2014, 20, 2913–2924. 10.1002/chem.201303786. PubMed DOI

Teo R. D.; Hwang J. Y.; Termini J.; Gross Z.; Gray H. B. Fighting Cancer with Corroles. Chem. Rev. 2016, 117, 2711–2729. 10.1021/acs.chemrev.6b00400. PubMed DOI PMC

Foroutan-Nejad C.; Larsen S.; Conradie J.; Ghosh A. Isocorroles as Homoaromatic NIR-Absorbing Chromophores: A First Quantum Chemical Study. Sci. Rep. 2018, 8, 11952.10.1038/s41598-018-29819-3. PubMed DOI PMC

Becke A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Miehlich B.; Savin A.; Stoll H.; Preuss H. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. 10.1016/0009-2614(89)87234-3. DOI

Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. 10.1039/b508541a. PubMed DOI

Keith T. A.; Bader R. F. W. Calculation of Magnetic Response Properties Using Atoms in Molecules. Chem. Phys. Lett. 1992, 194, 1–8. 10.1016/0009-2614(92)85733-Q. DOI

Keith T. A.; Bader R. F. W. Calculation of Magnetic Response Properties Using a Continuous Set of Gauge Transformations. Chem. Phys. Lett. 1993, 210, 223–231. 10.1016/0009-2614(93)89127-4. DOI

Keith T. A.; Bader R. F. W. Topological Analysis of Magnetically Induced Molecular Current Distributions. J. Chem. Phys. 1993, 99, 3669–3682. 10.1063/1.466165. DOI

Keith T. A. Calculation of Magnetizabilities Using GIAO Current Density Distributions. Chem. Phys. 1996, 213, 123–132. 10.1016/S0301-0104(96)00272-8. DOI

Keith T. A.; Bader R. F. W. Properties of Atoms in Molecules: Nuclear Magnetic Shielding. Can. J. Chem. 1996, 74, 185–200. 10.1139/v96-022. DOI

Keith T. A.AIMAll; Gristmill Software: Overland Park, KS, 2017.

Childs R. F. The Homotropylium Ion and Homoaromaticity. Acc. Chem. Res. 1984, 17, 347–352. 10.1021/ar00106a001. DOI

Gibson C. M.; Havenith R. W. A.; Fowler P. W.; Jenneskens L. W. Planar Homotropenylium Cation: A Transition State with Reversed Aromaticity. J. Org. Chem. 2015, 80, 1395–1401. 10.1021/jo502179k. PubMed DOI

Breslow R.; Foss F. W. Jr. Charge Transport in Nanoscale Aromatic and Antiaromatic Systems. J. Phys. Condens. Matter 2008, 20, 374104.10.1088/0953-8984/20/37/374104. DOI

Breslow R. Antiaromaticity. Acc. Chem. Res. 1973, 6, 393–398. 10.1021/ar50072a001. DOI

Fujii S.; Marqués-González S.; Shin J.-Y.; Shinokubo H.; Masuda T.; Nishino T.; Arasu N. P.; Vázquez H.; Kiguchi M. Highly-Conducting Molecular Circuits Based on Antiaromaticity. Nat. Commun. 2017, 8, 15984.10.1038/ncomms15984. PubMed DOI PMC

Cho S.; Yoon Z. S.; Kim K. S.; Yoon M.-C.; Cho D.-G.; Sessler J. L.; Kim D. Defining Spectroscopic Features of Heteroannulenic Antiaromatic Porphyrinoids. J. Phys. Chem. Lett. 2010, 1, 895–900. 10.1021/jz100039n. DOI

Johnson A. W.; Kay I. T.; Rodrigo R. 432. 2,2′-Bipyrrolic Macrocyclic Ring Systems. J. Chem. Soc. (Resumed) 1963, 0, 2336–2342. 10.1039/JR9630002336. DOI

Horie M.; Hayashi Y.; Yamaguchi S.; Shinokubo H. Synthesis of Nickel(II) Azacorroles by Pd-Catalyzed Amination of α,Α′-Dichlorodipyrrin NiII Complex and Their Properties. Chem. - Eur. J. 2012, 18, 5919–5923. 10.1002/chem.201200485. PubMed DOI

Omori H.; Hiroto S.; Shinokubo H. The Synthesis of NiII and AlIII 10-Azacorroles through Coordination-Induced Cyclisation Involving 1,2-Migration. Chem. Commun. 2016, 52, 3540–3543. 10.1039/C5CC10247B. PubMed DOI

Bröring M.; Brégier F.; Cónsul Tejero E.; Hell C.; Holthausen M. C. Revisiting the Electronic Ground State of Copper Corroles. Angew. Chem. Int. Ed. 2007, 46, 445–448. 10.1002/anie.200603676. PubMed DOI

Rösner J.; Cordes B.; Bahnmüller S.; Homolya G.; Sakow D.; Schweyen P.; Wicht R.; Bröring M. Heterocorrole Conformations: Little Saddling, Much Ruffling. Angew. Chem. Int. Ed. 2017, 56, 9967–9970. 10.1002/anie.201705551. PubMed DOI

Broadhurst M. J.; Grigg R.; Johnson A. W. Sulphur Extrusion Reactions Applied to the Synthesis of Corroles and Related Systems. J. Chem. Soc., Perkin Trans. 1 1972, 0, 1124–1135. 10.1039/p19720001124. DOI

Kamiya H.; Kondo T.; Sakida T.; Yamaguchi S.; Shinokubo H. Meso-Thiaporphyrinoids Revisited: Missing of Sulfur by Small Metals. Chem. – Eur. J. 2012, 18, 16129–16135. 10.1002/chem.201203255. PubMed DOI

Jusélius J.; Sundholm D. The Aromatic Pathways of Porphins, Chlorins and Bacteriochlorins. Phys. Chem. Chem. Phys. 2000, 2, 2145–2151. 10.1039/B000260G. PubMed DOI

Janda T.; Foroutan-Nejad C. Why Is Benzene Unique? Screening Magnetic Properties of C6H6 Isomers. ChemPhysChem 2018, 19, 2357–2363. 10.1002/cphc.201800364. PubMed DOI

Valiev R. R.; Fliegl H.; Sundholm D. Optical and Magnetic Properties of Antiaromatic Porphyrinoids. Phys. Chem. Chem. Phys. 2017, 19, 25979–25988. 10.1039/C7CP05460B. PubMed DOI

Bröring M.; Hell C.; Brégier F.; Burghaus O.; Cónsul Tejero E. New Porphyrinoids: Vanadyl(IV) Complexes of Meso-Aryl-Substituted Corrphycene and 10-Oxocorrole Ligands. Inorg. Chem. 2007, 46, 5477–5479. 10.1021/ic700844p. PubMed DOI

Ito T.; Hayashi Y.; Shimizu S.; Shin J.-Y.; Kobayashi N.; Shinokubo H. Gram-Scale Synthesis of Nickel(II) Norcorrole: The Smallest Antiaromatic Porphyrinoid. Angew. Chem. Int. Ed. 2012, 51, 8542–8545. 10.1002/anie.201204395. PubMed DOI

Ghosh A.; Wasbotten I. H.; Davis W.; Swarts J. C. Norcorrole and Dihydronorcorrole: A Predictive Quantum Chemical Study. Eur. J. Inorg. Chem. 2005, 2005, 4479–4485. 10.1002/ejic.200500433. DOI

Omori H.; Hiroto S.; Shinokubo H. 10-Silacorroles Exhibiting Near-Infrared Absorption and Emission. Chem. - Eur. J. 2017, 23, 7866–7870. 10.1002/chem.201701474. PubMed DOI

Frisch M. J., ,et al.Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2013.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...