Highly Conserved Ecosystems Facing Climate Change: Rapid Shifts in Odonata Assemblages of Central European Bogs

. 2025 Apr ; 31 (4) : e70183.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40202095

Freshwater diversity is declining at an alarming rate worldwide, and climate change is a key driver. However, attributing biological shifts solely to climate warming remains challenging because of confounding anthropogenic stressors. Peatbogs, being highly conserved, strictly protected, and minimally disturbed, offer a unique study system to isolate climate effects. We compared odonate assemblages in 27 Central European raised and transitional bogs between two sets of standardized surveys approximately 20 years apart (1998-2006 and 2020-2024). During this period, the mean annual air temperature has increased by 1.23°C. We tracked species richness, composition, taxonomic diversity, and functional traits (thermal tolerance, conservation value indicators, and selected morphological and life-history traits) and also examined phylogenetic patterns of species turnover. Although species richness remained stable, assemblage composition shifted markedly from cold-adapted, vulnerable bog specialists toward warm-adapted habitat generalists with lower conservation value. Notably, Ponto-Mediterranean species and those with a lower upper elevational limit increased their occupancy. Although the phylogenetic signal across the evolutionary tree of odonates was low, implying that the responses of the species to climate change were independent of their phylogenetic position, we revealed frequent genus-level replacements. These findings reinforce the position of odonates as a model group for detecting climate-driven changes in freshwater communities. Our study has revealed that climate warming alone can trigger profound reorganization of insect communities in inherently stable peatbog habitats. Specific traits linked to vulnerability (e.g., thermal index, red list status) and specialization proved to be promising predictors of future shifts in odonatofauna of temperate peatlands. The pronounced changes documented here may precede irreversible transformations of these unique ecosystems, highlighting the urgency of monitoring bog habitats and maintaining their stability under ongoing global change.

Zobrazit více v PubMed

Acquah‐Lamptey, D. , Brändle M., Brandl R., and Pinkert S.. 2020. “Temperature‐Driven Color Lightness and Body Size Variation Scale to Local Assemblages of European Odonata but Are Modified by Propensity for Dispersal.” Ecology and Evolution 10, no. 16: 8936–8948. 10.1002/ece3.6596. PubMed DOI PMC

Angilletta, M. J., Jr. , Steury T. D., and Sears M. W.. 2004. “Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life‐History Puzzle.” Integrative and Comparative Biology 44, no. 6: 498–509. 10.1093/icb/44.6.498. PubMed DOI

Araújo, M. B. , and Peterson A. T.. 2012. “Uses and Misuses of Bioclimatic Envelope Modeling.” Ecology 93, no. 7: 1527–1539. 10.1890/11-1930.1. PubMed DOI

Assandri, G. 2021. “Anthropogenic‐Driven Transformations of Dragonfly (Insecta: Odonata) Communities of Low Elevation Mountain Wetlands During the Last Century.” Insect Conservation and Diversity 14, no. 1: 26–39. 10.1111/icad.12439. DOI

Ball‐Damerow, J. E. , M'Gonigle L. K., and Resh V. H.. 2014. “Changes in Occurrence, Richness, and Biological Traits of Dragonflies and Damselflies (Odonata) in California and Nevada Over the Past Century.” Biodiversity and Conservation 23, no. 8: 2107–2126. 10.1007/s10531-014-0707-5. DOI

Baranov, V. , Jourdan J., Pilotto F., Wagner R., and Haase P.. 2020. “Complex and Nonlinear Climate‐Driven Changes in Freshwater Insect Communities Over 42 Years.” Conservation Biology 34, no. 5: 1241–1251. 10.1111/cobi.13477. PubMed DOI

Bartoń, K. 2023. “MuMIn: Multi‐Model Inference (Version 1.47.5) [Computer Software].” https://CRAN.R‐project.org/package=MuMIn.

Bílková, E. , Šigutová H., Pyszko P., Prieložná V., and Dolný A.. 2025. “Adapting a Country‐Specific Dragonfly Biotic Index: Framework for Seven Central European Countries and Transboundary Pattern Analysis.” Ecological Indicators 170: 113111. 10.1016/j.ecolind.2025.113111. DOI

Bivand, R. , Pebesma E., and Goméz‐Rubio V.. 2013. Applied Spatial Data Analysis With R. Second ed. Springer. https://asdar‐book.org/.

Boudot, J.‐P. , and Kalkman V.. 2015. Atlas of the European Dragonflies and Damselflies. KNVV Publishing.

Bowler, D. E. , Eichenberg D., Conze K.‐J., et al. 2021. “Winners and Losers Over 35 Years of Dragonfly and Damselfly Distributional Change in Germany.” Diversity and Distributions 27, no. 8: 1353–1366. 10.1111/ddi.13274. DOI

Buckley, L. B. , and Kingsolver J. G.. 2012. “Functional and Phylogenetic Approaches to Forecasting Species' Responses to Climate Change.” Annual Review of Ecology, Evolution, and Systematics 43: 205–226. 10.1146/annurev-ecolsys-110411-160516. DOI

Buisson, L. , Grenouillet G., Villéger S., Canal J., and Laffaille P.. 2013. “Toward a Loss of Functional Diversity in Stream Fish Assemblages Under Climate Change.” Global Change Biology 19, no. 2: 387–400. 10.1111/gcb.12056. PubMed DOI

Cáceres, M. D. , and Legendre P.. 2009. “Associations Between Species and Groups of Sites: Indices and Statistical Inference.” Ecology 90, no. 12: 3566–3574. 10.1890/08-1823.1. PubMed DOI

Cancellario, T. , Miranda R., Baquero E., Fontaneto D., Martínez A., and Mammola S.. 2022. “Climate Change Will Redefine Taxonomic, Functional, and Phylogenetic Diversity of Odonata in Space and Time.” npj Biodiversity 1, no. 1: 1–14. 10.1038/s44185-022-00001-3. PubMed DOI PMC

Cerini, F. , Stellati L., Luiselli L., and Vignoli L.. 2020. “Long‐Term Shifts in the Communities of Odonata: Effect of Chance or Climate Change?” North‐Western Journal of Zoology 16: 1–6.

Clavel, J. , Julliard R., and Devictor V.. 2011. “Worldwide Decline of Specialist Species: Toward a Global Functional Homogenization?” Frontiers in Ecology and the Environment 9, no. 4: 222–228. 10.1890/080216. DOI

Collen, B. , Whitton F., Dyer E. E., et al. 2014. “Global Patterns of Freshwater Species Diversity, Threat and Endemism.” Global Ecology and Biogeography 23: 40–51. 10.1111/geb.12096. PubMed DOI PMC

Corbet, P. S. 2004. Dragonflies: Behaviour and Ecology of Odonata. Harley Books.

Córdoba‐Aguilar, A. , Beatty C., and Bried J. T.. 2023. Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. Oxford University Press.

Dalzochio, M. S. , Périco E., Dametto N., and Sahlén G.. 2020. “Rapid Functional Traits Turnover in Boreal Dragonfly Communities (Odonata).” Scientific Reports 10, no. 1: 15411. 10.1038/s41598-020-71685-5. PubMed DOI PMC

Daufresne, M. , and Boët P.. 2007. “Climate Change Impacts on Structure and Diversity of Fish Communities in Rivers.” Global Change Biology 13, no. 12: 2467–2478. 10.1111/j.1365-2486.2007.01449.x. DOI

Dawson, T. P. , Jackson S. T., House J. I., Prentice I. C., and Mace G. M.. 2011. “Beyond Predictions: Biodiversity Conservation in a Changing Climate.” Science 332, no. 6025: 53–58. 10.1126/science.1200303. PubMed DOI

De Knijf, G. , Billqvist M., van Grunsven R., et al. 2024. Measuring the pulse of European biodiversity. European Red List of Dragonflies & Damselflies (Odonata). European Commission.

Eppinga, M. B. , Rietkerk M., Wassen M. J., and De Ruiter P. C.. 2009. “Linking Habitat Modification to Catastrophic Shifts and Vegetation Patterns in Bogs.” Plant Ecology 200, no. 1: 53–68. 10.1007/s11258-007-9309-6. DOI

Fox, J. 2022. “_polycor: Polychoric and Polyserial Correlations_.” R Package Version 0.8‐1 [Computer Software]. https://CRAN.R‐project.org/package=polycor.

Graham, R. W. , and Grimm E. C.. 1990. “Effects of Global Climate Change on the Patterns of Terrestrial Biological Communities.” Trends in Ecology & Evolution 5, no. 9: 289–292. 10.1016/0169-5347(90)90083-P. PubMed DOI

Guangchuang, Y. 2022. Data Integration, Manipulation and Visualization of Phylogenetic Trees. 1st ed. Chapman and Hall/CRC. 10.1201/9781003279242. DOI

Harley, C. D. G. 2011. “Climate Change, Keystone Predation, and Biodiversity Loss.” Science 334, no. 6059: 1124–1127. 10.1126/science.1210199. PubMed DOI

Hassall, C. 2015. “Odonata as Candidate Macroecological Barometers for Global Climate Change.” Freshwater Science 34, no. 3: 1040–1049. 10.1086/682210. DOI

Hassall, C. , and Thompson D. J.. 2008. “The Effects of Environmental Warming on Odonata: A Review.” International Journal of Odonatology 11, no. 2: 131–153. 10.1080/13887890.2008.9748319. DOI

Hassall, C. , and Thompson D. J.. 2010. “Accounting for Recorder Effort in the Detection of Range Shifts From Historical Data.” Methods in Ecology and Evolution 1, no. 4: 343–350. 10.1111/j.2041-210X.2010.00039.x. DOI

Hassall, C. , Thompson D. J., French G. C., and Harvey I. F.. 2007. “Historical Changes in the Phenology of British Odonata Are Related to Climate.” Global Change Biology 13, no. 5: 933–941. 10.1111/j.1365-2486.2007.01318.x. DOI

Hickling, R. , Roy D. B., Hill J. K., Fox R., and Thomas C. D.. 2006. “The Distributions of a Wide Range of Taxonomic Groups Are Expanding Polewards.” Global Change Biology 12, no. 3: 450–455. 10.1111/j.1365-2486.2006.01116.x. DOI

Hof, C. , Rahbek C., and Araújo M. B.. 2010. “Phylogenetic Signals in the Climatic Niches of the World's Amphibians.” Ecography 33, no. 2: 242–250. 10.1111/j.1600-0587.2010.06309.x. DOI

Hogreve, J. , and Suhling F.. 2022. “Development of Two Common Dragonfly Species With Diverging Occupancy Trends.” Journal of Insect Conservation 26, no. 4: 571–581. 10.1007/s10841-022-00396-1. DOI

Højsgaard, S. , Halekoh U., and Yan J.. 2006. “The R Package Geepack for Generalized Estimating Equations.” Journal of Statistical Software 15, no. 2: 1–11. 10.18637/jss.v015.i02. DOI

Holuša, O. , and Mückstein P.. 2007. Vážky (Odonata) Žďárských vrchů: Faunisticko‐ekologická Studie (Dragonflies (Odonata) of the Žďárské Vrchy Mts. Faunistic‐Ecological Study). Vol. 2. AOPK ČR, Správa CHKO Žďárské vrchy.

IPCC . 2023. “Section 2: Current Status and Trends.” In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Core Writing Team , Lee H., and Romero J., 35–115. IPCC.

IUCN . 2001. IUCN Red List Categories and Criteria, Version 3.1. IUCN Species Survival Commission.

Klemann‐Junior, L. , Vallejos M. A. V., Scherer‐Neto P., and Vitule J. R. S.. 2017. “Traditional Scientific Data vs. Uncoordinated Citizen Science Effort: A Review of the Current Status and Comparison of Data on Avifauna in Southern Brazil.” PLoS One 12, no. 12: e0188819. 10.1371/journal.pone.0188819. PubMed DOI PMC

Lüdecke, D. 2018. “Ggeffects: Tidy Data Frames of Marginal Effects From Regression Models.” Journal of Open Source Software 3, no. 26: 772. 10.21105/joss.00772. DOI

MacLean, S. A. , and Beissinger S. R.. 2017. “Species' Traits as Predictors of Range Shifts Under Contemporary Climate Change: A Review and Meta‐Analysis.” Global Change Biology 23, no. 10: 4094–4105. 10.1111/gcb.13736. PubMed DOI

Marcisz, K. , Kołaczek P., Gałka M., Diaconu A.‐C., and Lamentowicz M.. 2020. “Exceptional Hydrological Stability of a Sphagnum‐Dominated Peatland Over the Late Holocene.” Quaternary Science Reviews 231: 106180. 10.1016/j.quascirev.2020.106180. DOI

McRae, L. , Deinet S., and Freeman R.. 2017. “The Diversity‐Weighted Living Planet Index: Controlling for Taxonomic Bias in a Global Biodiversity Indicator.” PLoS One 12, no. 1: e0169156. 10.1371/journal.pone.0169156. PubMed DOI PMC

Millien, V. , Kathleen Lyons S., Olson L., Smith F. A., Wilson A. B., and Yom‐Tov Y.. 2006. “Ecotypic Variation in the Context of Global Climate Change: Revisiting the Rules.” Ecology Letters 9, no. 7: 853–869. 10.1111/j.1461-0248.2006.00928.x. PubMed DOI

Mitsch, W. J. , and Gosselink J. G.. 2000. “The Value of Wetlands: Importance of Scale and Landscape Setting.” Ecological Economics 35, no. 1: 25–33. 10.1016/S0921-8009(00)00165-8. DOI

Moore, M. P. , Hersch K., Sricharoen C., et al. 2021. “Sex‐Specific Ornament Evolution Is a Consistent Feature of Climatic Adaptation Across Space and Time in Dragonflies.” Proceedings of the National Academy of Sciences of the United States of America 118, no. 28: e2101458118. 10.1073/pnas.2101458118. PubMed DOI PMC

Morghad, F. , Samraoui F., Touati L., and Samraoui B.. 2019. “The Times They Are a Changin': Impact of Land‐Use Shift and Climate Warming on the Odonate Community of a Mediterranean Stream Over a 25‐Year Period.” Vie et Milieu 69: 25–33.

Oksanen, J. , Simpson G., Blanchet F., et al. 2022. “Vegan: Community Ecology Package.” R Package Version 2.6–4. https://CRAN.R‐project.org/package=vegan.

Olsen, K. , Svenning J.‐C., and Balslev H.. 2022. “Climate Change Is Driving Shifts in Dragonfly Species Richness Across Europe via Differential Dynamics of Taxonomic and Biogeographic Groups.” Diversity 14: 1066. 10.3390/d14121066. DOI

O'Neill, D. , Shaffrey L., Neumann J., Cheffings C., Norris K., and Pettorelli N.. 2024. “Investigating Odonates' Response to Climate Change in Great Britain: A Tale of Two Strategies.” Diversity and Distributions 30, no. 4: e13816. 10.1111/ddi.13816. DOI

Ott, J. 2010. “Dragonflies and Climatic Change‐Recent Trends in Germany and Europe.” BioRisk 5: 253–286. 10.3897/biorisk.5.857. DOI

Paradis, E. , and Schliep K.. 2019. “Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R.” Bioinformatics 35, no. 3: 526–528. 10.1093/bioinformatics/bty633. PubMed DOI

Patten, M. A. , and Benson B. R.. 2023. “A Broader Flight Season for Norway's Odonata Across a Century and a Half.” Oikos 2023, no. 9: e09882. 10.1111/oik.09882. DOI

Pélissié, M. , Johansson F., and Hyseni C.. 2022. “Pushed Northward by Climate Change: Range Shifts With a Chance of Co‐Occurrence Reshuffling in the Forecast for Northern European Odonates.” Environmental Entomology 51, no. 5: 910–921. 10.1093/ee/nvac056. PubMed DOI PMC

Pinkert, S. , Clausnitzer V., Acquah‐Lamptey D., De Marco P., and Johansson F.. 2023. “Odonata as Focal Taxa for Biological Responses to Climate Change.” In Dragonflies and Damselflies, edited by Cordoba‐Aguilar A., Beatty C., and Bried J., 371–384. Oxford University Press.

Powney, G. D. , Cham S. S. A., Smallshire D., and Isaac N. J. B.. 2015. “Trait Correlates of Distribution Trends in the Odonata of Britain and Ireland.” PeerJ 3: e1410. 10.7717/peerj.1410. PubMed DOI PMC

R Core Team . 2024. R: A Language and Environment for Statistical Computing (Version 4.4.1) [Computer Software]. R Foundation for Statistical Computing. https://www.R‐project.org.

Rapacciuolo, G. , Ball‐Damerow J. E., Zeilinger A. R., and Resh V. H.. 2017. “Detecting Long‐Term Occupancy Changes in Californian Odonates From Natural History and Citizen Science Records.” Biodiversity and Conservation 26, no. 12: 2933–2949. 10.1007/s10531-017-1399-4. DOI

Reid, A. J. , Carlson A. K., Creed I. F., et al. 2019. “Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity.” Biological Reviews 94, no. 3: 849–873. 10.1111/brv.12480. PubMed DOI

Revell, L. J. 2024. “Phytools 2.0: An Updated R Ecosystem for Phylogenetic Comparative Methods (and Other Things).” PeerJ 12: e16505. 10.7717/peerj.16505. PubMed DOI PMC

Rosset, V. , Lehmann A., and Oertli B.. 2010. “Warmer and Richer? Predicting the Impact of Climate Warming on Species Richness in Small Temperate Waterbodies.” Global Change Biology 16, no. 8: 2376–2387. 10.1111/j.1365-2486.2010.02206.x. DOI

Sayer, C. A. , Fernando E., Jimenez R. R., et al. 2025. “One‐Quarter of Freshwater Fauna Threatened With Extinction.” Nature 638: 138–145. 10.1038/s41586-024-08375-z. PubMed DOI PMC

Schäfer, R. B. , and Piggott J. J.. 2018. “Advancing Understanding and Prediction in Multiple Stressor Research Through a Mechanistic Basis for Null Models.” Global Change Biology 24, no. 5: 1817–1826. 10.1111/gcb.14073. PubMed DOI

Scheffer, M. , Carpenter S., Foley J. A., Folke C., and Walker B.. 2001. “Catastrophic Shifts in Ecosystems.” Nature 413, no. 6856: 591–596. 10.1038/35098000. PubMed DOI

Scheffers, B. R. , De Meester L., Bridge T. C. L., et al. 2016. “The Broad Footprint of Climate Change From Genes to Biomes to People.” Science 354, no. 6313: aaf7671. 10.1126/science.aaf7671. PubMed DOI

Sentis, A. , Kaunisto K., Chari L., et al. 2023. “Odonata Trophic Ecology.” In Dragonflies and Damselflies. Model Organisms for Ecological and Evolutionary Research, edited by Córdoba‐Aguilar A., Beatty C., and Bried J. T., Second ed., 219–232. Oxford University Press.

Šigutová, H. , Dolný A., Samways M. J., et al. 2023. “Odonata as Indicators of Pollution, Habitat Quality, and Landscape Disturbance.” In Dragonflies and Damselflies, edited by Cordoba‐Aguilar A., Beatty C., and Bried J., 371–384. Oxford University Press. 10.1093/oso/9780192898623.003.0026. DOI

Simaika, J. P. , and Samways M. J.. 2015. “Predicted Range Shifts of Dragonflies Over a Wide Elevation Gradient in the Southern Hemisphere.” Freshwater Science 34, no. 3: 1133–1143. 10.1086/682686. DOI

Simpson, G. 2022. “_permute: Functions for Generating Restricted Permutations of Data_.” R package version 0.9‐7 [computer software]. https://CRAN.R‐project.org/package=permute.

Smith, J. , Samways M. J., and Taylor S.. 2007. “Assessing Riparian Quality Using Two Complementary Sets of Bioindicators.” Biodiversity and Conservation 16, no. 9: 2695–2713. 10.1007/s10531-006-9081-2. DOI

Spitzer, K. , and Danks H.. 2006. “Insect Biodiversity of Boreal Peat Bogs.” Annual Review of Entomology 51: 137–161. 10.1146/annurev.ento.51.110104.151036. PubMed DOI

Sternberg, K. , and Buchwald R.. 1999. Die Libellen Baden‐Württembergs. Vol. 1. Verlag Eugen Ulmer Gmbh & Co.

Stoks, R. , Geerts A. N., and De Meester L.. 2014. “Evolutionary and Plastic Responses of Freshwater Invertebrates to Climate Change: Realized Patterns and Future Potential.” Evolutionary Applications 7, no. 1: 42–55. 10.1111/eva.12108. PubMed DOI PMC

Tang, D. H. Y. , and Visconti P.. 2021. “Biases of Odonata in Habitats Directive: Trends, Trend Drivers, and Conservation Status of European Threatened Odonata.” Insect Conservation and Diversity 14, no. 1: 1–14. 10.1111/icad.12450. DOI

Ter Braak, C. J. F. , and Šmilauer P.. 2012. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (Version 5.01). Microcomputer Power.

Termaat, T. , van Strien A. J., van Grunsven R. H. A., et al. 2019. “Distribution Trends of European Dragonflies Under Climate Change.” Diversity and Distributions 25, no. 6: 936–950. 10.1111/ddi.12913. DOI

Thomas, C. D. , Cameron A., and Green R. E.. 2004. “Extinction Risk From Climate Change.” Nature 427, no. 6970: 145–148. 10.1038/nature02121. PubMed DOI

Tickner, D. , Opperman J. J., Abell R., et al. 2020. “Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan.” BioScience 70, no. 4: 330–342. 10.1093/biosci/biaa002. PubMed DOI PMC

Urban, M. C. 2015. “Accelerating Extinction Risk From Climate Change.” Science 348, no. 6234: 571–573. 10.1126/science.aaa4984. PubMed DOI

Violle, C. , Navas M.‐L., Vile D., et al. 2007. “Let the Concept of Trait Be Functional!” Oikos 116, no. 5: 882–892. 10.1111/j.0030-1299.2007.15559.x. DOI

Viza, A. , Garcia‐Raventós A., Riera J. L., et al. 2023. “Species‐Specific Functional Traits Rather Than Phylogenetic Relatedness Better Predict Future Range‐Shift Responses of Odonates.” Insect Conservation and Diversity 16, no. 5: 574–587. 10.1111/icad.12647. DOI

Warren, D. L. , Glor R. E., and Turelli M.. 2008. “Environmental Niche Equivalency Versus Conservatism: Quantitative Approaches to Niche Evolution.” Evolution 62, no. 11: 2868–2883. 10.1111/j.1558-5646.2008.00482.x. PubMed DOI

Wei, T. , and Simko V.. 2024. “R Package ‘Corrplot’: Visualization of a Correlation Matrix (Version 0.95) [Computer Software].” https://github.com/taiyun/corrplot.

Whitehead, P. G. , Wilby R. L., Battarbee R. W., Kernan M., and Wade A. J.. 2009. “A Review of the Potential Impacts of Climate Change on Surface Water Quality.” Hydrological Sciences Journal 54, no. 1: 101–123. 10.1623/hysj.54.1.101. DOI

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer‐Verlag.

Wiens, J. J. , Ackerly D. D., Allen A. P., et al. 2010. “Niche Conservatism as an Emerging Principle in Ecology and Conservation Biology.” Ecology Letters 13, no. 10: 1310–1324. 10.1111/j.1461-0248.2010.01515.x. PubMed DOI

Wilson, D. S. , and Yoshimura J.. 1994. “On the Coexistence of Specialists and Generalists.” American Naturalist 144, no. 4: 692–707. 10.1086/285702. DOI

Woodward, G. , Perkins D. M., and Brown L. E.. 2010. “Climate Change and Freshwater Ecosystems: Impacts Across Multiple Levels of Organization.” Philosophical Transactions of the Royal Society, B: Biological Sciences 365, no. 1549: 2093–2106. 10.1098/rstb.2010.0055. PubMed DOI PMC

Zelený, D. 2018. “_weimea: Weighted Mean Analysis_.” R package version 0.1.4/r27 [Computer software]. https://R‐Forge.R‐project.org/projects/weimea/.

Zeuss, D. , Brandl R., Brändle M., Rahbek C., and Brunzel S.. 2014. “Global Warming Favours Light‐Coloured Insects in Europe.” Nature Communications 5, no. 1: 3874. 10.1038/ncomms4874. PubMed DOI PMC

Bílková, E. , Šigutová H., Pyszko P., Prieložná V., and Dolný A.. 2025. “Adapting a Country‐Specific Dragonfly Biotic Index: Framework for Seven Central European Countries and Transboundary Pattern Analysis.” Ecological Indicators 170, no. 113: 111.

De Knijf, G. , Billqvist M., van Grunsven R., et al. 2024. Measuring the Pulse of European Biodiversity. European Red List of Dragonflies & Damselflies (Odonata). European Commission.

Dolný, A. , Harabiš F., and Bárta D.. 2016. Vážky (Insecta: Odonata) České republiky. Academia.

Harabiš, F. , and Hronková J.. 2020. “European Database of the Life‐History, Morphological and Habitat Characteristics of Dragonflies (Odonata).” European Journal of Entomology 117: 302–308.

Termaat, T. , van Strien A. J., van Grunsven R. H. A., et al. 2019. “Distribution Trends of European Dragonflies Under Climate Change.” Diversity and Distributions 25: 936–950. 10.1111/ddi.12913. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...