trait‐based approach Dotaz Zobrazit nápovědu
The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.
- MeSH
- druhová specificita MeSH
- ekologie * MeSH
- fenotyp MeSH
- rostliny * MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Functional diversity (FD) has the potential to address many ecological questions, from impacts of global change on biodiversity to ecological restoration. There are several methods estimating the different components of FD. However, most of these methods can only be computed at limited spatial scales and cannot account for intraspecific trait variability (ITV), despite its significant contribution to FD. Trait probability density (TPD) functions (which explicitly account for ITV) reflect the probabilistic nature of niches. By doing so, the TPD approach reconciles existing methods for estimating FD within a unifying framework, allowing FD to be partitioned seamlessly across multiple scales (from individuals to species, and from local to global scales), and accounting for ITV. We present methods to estimate TPD functions at different spatial scales and probabilistic implementations of several FD concepts, including the primary components of FD (functional richness, evenness, and divergence), functional redundancy, functional rarity, and solutions to decompose beta FD into nested and unique components. The TPD framework has the potential to unify and expand analyses of functional ecology across scales, capturing the probabilistic and multidimensional nature of FD. The R package TPD (https://CRAN.R-project.org/package=TPD) will allow users to achieve more comparative results across regions and case studies.
- MeSH
- biodiverzita * MeSH
- ekologie * MeSH
- fenotyp MeSH
- pravděpodobnostní funkce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Approaches to Studying Personality, 230 A Motive-Based Approach. A Trait-Based Approach. Other Trait Approaches. A Belief-Based Approach. Value-Based Approaches.
3rd ed. xiii, 701 s. : il.
- MeSH
- chování MeSH
- psychologie aplikovaná MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Psychologie
- NLK Obory
- psychologie, klinická psychologie
AIMS/HYPOTHESIS: In the present study we investigated potential associations of a set of 45 single nucleotide polymorphisms (SNP) in 20 candidate genes on eight chromosomes with diabetic nephropathy (DN) in type 2 diabetes mellitus. We aimed to compare two methodological approaches suitable for analysing susceptibility to complex traits: single- and multi-locus analyses. MATERIALS AND METHODS: The study comprised a total of 647 subjects in one of three groups: diabetes with or without DN, or no diabetes. Genotypes were detected by PCR-based methodology (PCR only, PCR plus RFLP, or allele-specific PCR). Haplotypes were inferred in silico. Set association (tested using SUMSTAT software) was used for multilocus analysis. RESULTS: After correction for multiple comparisons, only one SNP, in the gene encoding the receptor of advanced glycation end products, AGER 2184A/G (gene symbol formerly known as RAGE) showed a significant association with DN (p = 0.0006) in single-locus analysis. In multi-locus analysis, six SNPs exhibited a significant association with DN: four SNPs on chromosome 6p (AGER 2184A/G, LTA 252A/G, EDN1 8002G/A and AGER -429T/C) and two SNPs on chromosome 7q (NOS3 774C/T and NOS3 E298D), omnibus p = 0.033. Haplotype analysis revealed significant differences between DN and control groups in haplotype frequencies on chromosome 6 (p = 0.0002); however, there were no significant difference in the frequencies of the NOS3 haplotypes on chromosome 7. Logistic regression analysis identified SNPs AGER 2184A/G and NOS3 774C/T, together with diabetes duration and HbA1c, as significant predictors of DN. Testing for interactions between SNPs on chromosomes 6 and 7 did not provide significant evidence for epistatic interaction. CONCLUSIONS/INTERPRETATION: Using the set-association approach we identified significant associations of several SNPs on chromosomes 6 and 7 with DN. The single- and multi-locus analyses represent complementary methods.
- MeSH
- Bayesova věta MeSH
- diabetické nefropatie epidemiologie genetika MeSH
- financování organizované MeSH
- genotyp MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 6 MeSH
- lidské chromozomy, pár 7 MeSH
- mapování chromozomů MeSH
- polymerázová řetězová reakce MeSH
- polymorfismus genetický MeSH
- referenční hodnoty MeSH
- rizikové faktory MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: A statistical pipeline was developed and used for determining candidate genes and candidate gene coexpression networks involved in 2 alcohol (i.e., ethanol [EtOH]) metabolism phenotypes, namely alcohol clearance and acetate area under the curve in a recombinant inbred (RI) (HXB/BXH) rat panel. The approach was also used to provide an indication of how EtOH metabolism can impact the normal function of the identified networks. METHODS: RNA was extracted from alcohol-naïve liver tissue of 30 strains of HXB/BXH RI rats. The reconstructed transcripts were quantitated, and data were used to construct gene coexpression modules and networks. A separate group of rats, comprising the same 30 strains, were injected with EtOH (2 g/kg) for measurement of blood EtOH and acetate levels. These data were used for quantitative trait loci (QTL) analysis of the rate of EtOH disappearance and circulating acetate levels. The analysis pipeline required calculation of the module eigengene values, the correction of these values with EtOH metabolism rates and acetate levels across the rat strains, and the determination of the eigengene QTLs. For a module to be considered a candidate for determining phenotype, the module eigengene values had to have significant correlation with the strain phenotypic values and the module eigengene QTLs had to overlap the phenotypic QTLs. RESULTS: Of the 658 transcript coexpression modules generated from liver RNA sequencing data, a single module satisfied all criteria for being a candidate for determining the alcohol clearance trait. This module contained 2 alcohol dehydrogenase genes, including the gene whose product was previously shown to be responsible for the majority of alcohol elimination in the rat. This module was also the only module identified as a candidate for influencing circulating acetate levels. This module was also linked to the process of generation and utilization of retinoic acid as related to the autonomous immune response. CONCLUSIONS: We propose that our analytical pipeline can successfully identify genetic regions and transcripts which predispose a particular phenotype and our analysis provides functional context for coexpression module components.
- MeSH
- ethanol aplikace a dávkování metabolismus MeSH
- játra účinky léků metabolismus MeSH
- krysa rodu rattus MeSH
- metabolická clearance účinky léků fyziologie MeSH
- multifaktoriální dědičnost účinky léků fyziologie MeSH
- pití alkoholu genetika metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- strojové učení bez učitele * MeSH
- systémová biologie metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Evidence for aspirin's chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk. METHODS: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N = 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N = 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). RESULTS: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03-1.13; OR: 3.33, 95% CI, 2.46-4.50; and OR: 1.15, 95% CI, 1.02-1.29, respectively). CONCLUSIONS: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin's reduction of metastasis. IMPACT: Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.
- MeSH
- Aspirin farmakologie terapeutické užití MeSH
- kolorektální nádory farmakoterapie MeSH
- lidé MeSH
- mendelovská randomizace metody MeSH
- proteomika metody MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
This position paper has been drafted by experts from the Czech national board of diseases with bronchial obstruction, of the Czech Pneumological and Phthisiological Society. The statements and recommendations are based on both the results of randomized controlled trials and data from cross-sectional and prospective real-life studies to ensure they are as close as possible to the context of daily clinical practice and the current health care system of the Czech Republic. Chronic Obstructive Pulmonary Disease (COPD) is a preventable and treatable heterogeneous syndrome with a number of pulmonary and extrapulmonary clinical features and concomitant chronic diseases. The disease is associated with significant mortality, morbidity and reduced quality of life. The main characteristics include persistent respiratory symptoms and only partially reversible airflow obstruction developing due to an abnormal inflammatory response of the lungs to noxious particles and gases. Oxidative stress, protease-antiprotease imbalance and increased numbers of pro-inflammatory cells (mainly neutrophils) are the main drivers of primarily non-infectious inflammation in COPD. Besides smoking, household air pollution, occupational exposure, low birth weight, frequent respiratory infections during childhood and also genetic factors are important risk factors of COPD development. Progressive airflow limitation and airway remodelling leads to air trapping, static and dynamic hyperinflation, gas exchange abnormalities and decreased exercise capacity. Various features of the disease are expressed unequally in individual patients, resulting in various types of disease presentation, emerging as the "clinical phenotypes" (for specific clinical characteristics) and "treatable traits" (for treatable characteristics) concept. The estimated prevalence of COPD in Czechia is around 6.7% with 3,200-3,500 deaths reported annually. The elementary requirements for diagnosis of COPD are spirometric confirmation of post-bronchodilator airflow obstruction (post-BD FEV1/VCmax <70%) and respiratory symptoms assessement (dyspnoea, exercise limitation, cough and/or sputum production. In order to establish definite COPD diagnosis, a five-step evaluation should be performed, including: 1/ inhalation risk assessment, 2/ symptoms evaluation, 3/ lung function tests, 4/ laboratory tests and 5/ imaging. At the same time, all alternative diagnoses should be excluded. For disease classification, this position paper uses both GOLD stages (1 to 4), GOLD groups (A to D) and evaluation of clinical phenotype(s). Prognosis assessment should be done in each patient. For this purpose, we recommend the use of the BODE or the CADOT index. Six elementary clinical phenotypes are recognized, including chronic bronchitis, frequent exacerbator, emphysematous, asthma/COPD overlap (ACO), bronchiectases with COPD overlap (BCO) and pulmonary cachexia. In our concept, all of these clinical phenotypes are also considered independent treatable traits. For each treatable trait, specific pharmacological and non-pharmacological therapies are defined in this document. The coincidence of two or more clinical phenotypes (i.e., treatable traits) may occur in a single individual, giving the opportunity of fully individualized, phenotype-specific treatment. Treatment of COPD should reflect the complexity and heterogeneity of the disease and be tailored to individual patients. Major goals of COPD treatment are symptom reduction and decreased exacerbation risk. Treatment strategy is divided into five strata: risk elimination, basic treatment, phenotype-specific treatment, treatment of respiratory failure and palliative care, and treatment of comorbidities. Risk elimination includes interventions against tobacco smoking and environmental/occupational exposures. Basic treatment is based on bronchodilator therapy, pulmonary rehabilitation, vaccination, care for appropriate nutrition, inhalation training, education and psychosocial support. Adequate phenotype-specific treatment varies phenotype by phenotype, including more than ten different pharmacological and non-pharmacological strategies. If more than one clinical phenotype is present, treatment strategy should follow the expression of each phenotypic label separately. In such patients, multicomponental therapeutic regimens are needed, resulting in fully individualized care. In the future, stronger measures against smoking, improvements in occupational and environmental health, early diagnosis strategies, as well as biomarker identification for patients responsive to specific treatments are warranted. New classes of treatment (inhaled PDE3/4 inhibitors, single molecule dual bronchodilators, anti-inflammatory drugs, gene editing molecules or new bronchoscopic procedures) are expected to enter the clinical practice in a very few years.
- MeSH
- bronchodilatancia normy terapeutické užití MeSH
- chronická nemoc terapie MeSH
- chronická obstrukční plicní nemoc diagnóza genetika patofyziologie terapie MeSH
- dospělí MeSH
- fenotyp * MeSH
- lidé středního věku MeSH
- lidé MeSH
- péče orientovaná na pacienta normy MeSH
- pneumologie normy MeSH
- prospektivní studie MeSH
- průřezové studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- směrnice pro lékařskou praxi jako téma * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
OBJECTIVES: This article proposes a new approach, called the "similarity coefficient" (SC) for verifying family relationships from skeletal remains using nonmetric traits. Based on this method and further analyses, the authors aim to show the degree of similarity between individuals with varying degrees of kinship, including inbred individuals. MATERIALS AND METHODS: Our sample includes the skeletal remains of 34 individuals with known genealogical data (four generations, 19th to 20th centuries). A total of 243 skeletal nonmetric traits were evaluated with respect to their anatomical characteristics. The SC was calculated by quantifying the agreement of trait occurrence between individuals. We also identified the traits that support the biological relationships of particular individuals by accounting for their population frequencies. RESULTS: There was a positive correlation between the morphological similarity of biologically related individuals and their biological distance. In some cases, we found greater degree of morphological similarity between first cousins than among other close relatives such as parents and children. At the same time, there was no statistically significant difference in the degree of similarity between inbred individuals and common relatives. Proven family relationships were best reflected by cranial traits, especially bone bridges associated with the courses of blood vessels and nerves. CONCLUSIONS: The use of skeletal nonmetric traits for the detection of relatives is possible. There is a relationship between biological distance and the degree of morphological similarity in related individuals. It also appears that inbreeding, despite previous assumptions, does not lead to a significant reduction in morphological variation.
- MeSH
- antropologie fyzická metody MeSH
- antropometrie MeSH
- běloši * MeSH
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- dospělí MeSH
- genealogie a heraldika * MeSH
- inbreeding MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- rodina * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
This research proposes an assessment and decision support model to use when a driver should be examined about their propensity for traffic accidents, based on an estimation of the driver's psychological traits. The proposed model was tested on a sample of 305 drivers. Each participant completed four psychological tests: the Barratt Impulsiveness Scale (BIS-11), the Aggressive Driving Behaviour Questionnaire (ADBQ), the Manchester Driver Attitude Questionnaire (DAQ) and the Questionnaire for Self-assessment of Driving Ability. In addition, participants completed an extensive demographic and driving survey. Various fuzzy inference systems were tested and each was defined using the well-known Wang-Mendel method for rule-base definition based on empirical data. For this purpose, a programming code was designed and utilized. Based on the obtained results, it was determined which combination of the considered psychological tests provides the best prediction of a driver's propensity for traffic accidents. The best of the considered fuzzy inference systems might be used as a decision support tool in various situations, such as in recruitment procedures for professional drivers. The validity of the proposed fuzzy approach was confirmed as its implementation provided better results than from statistics, in this case multiple regression analysis.
- MeSH
- agrese MeSH
- bezpečnost MeSH
- dopravní nehody * MeSH
- dospělí MeSH
- fuzzy logika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- postoj MeSH
- průzkumy a dotazníky MeSH
- psychologické modely * MeSH
- regresní analýza MeSH
- řízení motorových vozidel psychologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Spot blotch (SB) caused by Bipolaris sorokiniana and powdery mildew (PM) caused by Blumeria graminis f. sp. hordei are two important diseases of barley. To map genetic loci controlling susceptibility and resistance to these diseases, a mapping population consisting of 138 recombinant inbred lines (RILs) was developed from the cross between Bowman and ND5883. A genetic map was constructed for the population with 852 unique single nucleotide polymorphism markers generated by sequencing-based genotyping. Bowman and ND5883 showed distinct infection responses at the seedling stage to two isolates (ND90Pr and ND85F) of Bipolaris sorokiniana and one isolate (Race I) of Blumeria graminis f. sp. hordei. Genetic analysis of the RILs revealed that one major gene (Scs6) controls susceptibility to Bipolaris sorokiniana isolate ND90Pr, and another major gene (Mla8) confers resistance to Blumeria graminis f. sp. hordei isolate Race I, respectively. Scs6 was mapped on chromosome 1H of Bowman, as previously reported. Mla8 was also mapped to the short arm of 1H, which was tightly linked but not allelic to the Rcs6/Scs6 locus. Quantitative trait locus (QTL) analysis identified two QTLs, QSbs-1H-P1 and QSbs-7H-P1, responsible for susceptibility to spot blotch caused by Bipolaris sorokiniana isolate ND85F in ND5883, which are located on chromosome 1H and 7H, respectively. QSbs-7H-P1 was mapped to the same region as Rcs5, whereas QSbs-1H-P1 may represent a novel allele conferring seedling stage susceptibility to isolate ND85F. Identification and molecular mapping of the loci for SB susceptibility and PM resistance will facilitate development of barley cultivars with resistance to the diseases.