• Je něco špatně v tomto záznamu ?

Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach

M. Čubranić-Dobrodolac, L. Švadlenka, S. Čičević, M. Dobrodolac

. 2020 ; 27 (2) : 156-167. [pub] 20191113

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21012532

This research proposes an assessment and decision support model to use when a driver should be examined about their propensity for traffic accidents, based on an estimation of the driver's psychological traits. The proposed model was tested on a sample of 305 drivers. Each participant completed four psychological tests: the Barratt Impulsiveness Scale (BIS-11), the Aggressive Driving Behaviour Questionnaire (ADBQ), the Manchester Driver Attitude Questionnaire (DAQ) and the Questionnaire for Self-assessment of Driving Ability. In addition, participants completed an extensive demographic and driving survey. Various fuzzy inference systems were tested and each was defined using the well-known Wang-Mendel method for rule-base definition based on empirical data. For this purpose, a programming code was designed and utilized. Based on the obtained results, it was determined which combination of the considered psychological tests provides the best prediction of a driver's propensity for traffic accidents. The best of the considered fuzzy inference systems might be used as a decision support tool in various situations, such as in recruitment procedures for professional drivers. The validity of the proposed fuzzy approach was confirmed as its implementation provided better results than from statistics, in this case multiple regression analysis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21012532
003      
CZ-PrNML
005      
20210507102513.0
007      
ta
008      
210420s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1080/17457300.2019.1690002 $2 doi
035    __
$a (PubMed)31718434
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Čubranić-Dobrodolac, Marjana $u Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia $u Faculty of Transport Engineering, University of Pardubice, Pardubice, Czech Republic
245    10
$a Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach / $c M. Čubranić-Dobrodolac, L. Švadlenka, S. Čičević, M. Dobrodolac
520    9_
$a This research proposes an assessment and decision support model to use when a driver should be examined about their propensity for traffic accidents, based on an estimation of the driver's psychological traits. The proposed model was tested on a sample of 305 drivers. Each participant completed four psychological tests: the Barratt Impulsiveness Scale (BIS-11), the Aggressive Driving Behaviour Questionnaire (ADBQ), the Manchester Driver Attitude Questionnaire (DAQ) and the Questionnaire for Self-assessment of Driving Ability. In addition, participants completed an extensive demographic and driving survey. Various fuzzy inference systems were tested and each was defined using the well-known Wang-Mendel method for rule-base definition based on empirical data. For this purpose, a programming code was designed and utilized. Based on the obtained results, it was determined which combination of the considered psychological tests provides the best prediction of a driver's propensity for traffic accidents. The best of the considered fuzzy inference systems might be used as a decision support tool in various situations, such as in recruitment procedures for professional drivers. The validity of the proposed fuzzy approach was confirmed as its implementation provided better results than from statistics, in this case multiple regression analysis.
650    12
$a dopravní nehody $7 D000063
650    _2
$a mladiství $7 D000293
650    _2
$a dospělí $7 D000328
650    _2
$a agrese $7 D000374
650    _2
$a postoj $7 D001290
650    _2
$a řízení motorových vozidel $x psychologie $7 D001334
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a fuzzy logika $7 D017143
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    12
$a psychologické modely $7 D008960
650    _2
$a regresní analýza $7 D012044
650    _2
$a bezpečnost $7 D012449
650    _2
$a průzkumy a dotazníky $7 D011795
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
700    1_
$a Švadlenka, Libor $u Faculty of Transport Engineering, University of Pardubice, Pardubice, Czech Republic
700    1_
$a Čičević, Svetlana $u Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia
700    1_
$a Dobrodolac, Momčilo $u Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia
773    0_
$w MED00193975 $t International journal of injury control and safety promotion $x 1745-7319 $g Roč. 27, č. 2 (2020), s. 156-167
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31718434 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507102513 $b ABA008
999    __
$a ok $b bmc $g 1650821 $s 1132911
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 27 $c 2 $d 156-167 $e 20191113 $i 1745-7319 $m International journal of injury control and safety promotion $n Int J Inj Contr Saf Promot $x MED00193975
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...