Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies

. 2019 Jul 07 ; 10 (25) : 6261-6269. [epub] 20190605

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31367301

Single-molecule junctions are ideal test beds for investigating the fundamentals of charge transport at the nanoscale. Conducting properties are strongly dependent on the metal-molecule interface geometry, which, however, is very poorly characterized due to numerous experimental challenges. We report on a new methodology for characterizing the adsorption site of single-molecule junctions through the combination of surface enhanced Raman scattering (SERS), current-voltage (I-V) curve measurements, and density functional theory simulations. This new methodology discriminates between three different adsorption sites for benzenedithiol and aminobenzenethiol junctions, which cannot be identified by solo measurements of either SERS or I-V curves. Using this methodology, we determine the interface geometry of these two prototypical molecules at the junction and its time evolution. By modulating the applied voltage, we can change and monitor the distribution of adsorption sites at the junction.

Zobrazit více v PubMed

Aviram A., Ratner M. A. Chem. Phys. Lett. 1974;29:277–283.

Kiguchi M., Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory, Springer, Singapore, 2016.

Song H., Reed M. A., Lee T. Adv. Mater. 2011;23:1583–1608. PubMed

Tao N. J. Nat. Nanotechnol. 2006;1:173–181. PubMed

Song H., Kim Y., Jang Y. H., Jeong H., Reed M. A., Lee T. Nature. 2009;462:1039–1043. PubMed

Fujii S., Marques-Gonzalez S., Shin J. Y., Shinokubo H., Masuda T., Nishino T., Arasu N. P., Vazquez H., Kiguchi M. Nat. Commun. 2017;8:15984. PubMed PMC

Venkataraman L., Klare J. E., Tam I. W., Nuckolls C., Hybertsen M. S., Steigerwald M. L. Nano Lett. 2006;6:458–462. PubMed

Kim Y., Pietsch T., Erbe A., Belzig W., Scheer E. Nano Lett. 2011;11:3734–3738. PubMed

Karimi M. A., Bahoosh S. G., Herz M., Hayakawa R., Pauly F., Scheer E. Nano Lett. 2016;16:1803–1807. PubMed

Isshiki Y., Fujii S., Nishino T., Kiguchi M. J. Am. Chem. Soc. 2018;140:3760–3767. PubMed

Leary E., Zotti L. A., Miguel D., Marquez I. R., Palomino-Ruiz L., Cuerva J. M., Rubio-Bollinger G., Gonzalez M. T., Agrait N. J. Phys. Chem. C. 2018;122:3211–3218.

Terada S., Yokoyama T., Sakano M., Imanishi A., Kitajima Y., Kiguchi M., Okamoto Y., Ohta T. Surf. Sci. 1998;414:107–117.

Haiss W., Wang C. S., Grace I., Batsanov A. S., Schiffrin D. J., Higgins S. J., Bryce M. R., Lambert C. J., Nichols R. J. Nat. Mater. 2006;5:995–1002. PubMed

Yoshinobu J., Takagi N., Kawai M. Chem. Phys. Lett. 1993;211:48–52.

Hihath J., Arroyo C. R., Rubio-Bollinger G., Tao N., Agrait N. Nano Lett. 2008;8:1673–1678. PubMed

Nie S. Science. 1997;275:1102–1106. PubMed

Phan-Quang G. C., Lee H. K., Teng H. W., Koh C. S. L., Yim B. Q., Tan E. K. M., Tok W. L., Phang I. Y., Ling X. Y. Angew. Chem., Int. Ed. 2018;57:5792–5796. PubMed

Ioffe Z., Shamai T., Ophir A., Noy G., Yutsis I., Kfir K., Cheshnovsky O., Selzer Y. Nat. Nanotechnol. 2008;3:727–732. PubMed

Liu Z., Ding S. Y., Chen Z. B., Wang X., Tian J. H., Anema J. R., Zhou X. S., Wu D. Y., Mao B. W., Xu X., Ren B., Tian Z. Q. Nat. Commun. 2011;2:305. PubMed PMC

Ward D. R., Corley D. A., Tour J. M., Natelson D. Nat. Nanotechnol. 2011;6:33–38. PubMed

Bi H., Palma C. A., Gong Y. X., Hasch P., Elbing M., Mayor M., Reichert J., Barth J. V. J. Am. Chem. Soc. 2018;140:4835–4840. PubMed

Kaneko S., Murai D., Marques-Gonzalez S., Nakamura H., Komoto Y., Fujii S., Nishino T., Ikeda K., Tsukagoshi K., Kiguchi M. J. Am. Chem. Soc. 2016;138:1294–1300. PubMed

Zotti L. A., Kirchner T., Cuevas J. C., Pauly F., Huhn T., Scheer E., Erbe A. Small. 2010;6:1529–1535. PubMed

Reed M. A., Zhou C., Muller C. J., Burgin T. P., Tour J. M. Science. 1997;278:252–254.

Kergueris C., Bourgoin J. P., Palacin S., Esteve D., Urbina C., Magoga M., Joachim C. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:12505–12513.

Tsutsui M., Shoji K., Taniguchi M., Kawai T. Nano Lett. 2008;8:345–349. PubMed

Soler J. M., Artacho E., Gale J. D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. J. Phys.: Condens. Matter. 2002;14:2745–2779. PubMed

Brandbyge M., Mozos J. L., Ordejon P., Taylor J., Stokbro K. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;65:165401.

Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. PubMed

Tian J. H., Liu B., Li X., Yang Z. L., Ren B., Wu S. T., Tao N., Tian Z. Q. J. Am. Chem. Soc. 2006;128:14748–14749. PubMed

Xiao X. Y., Xu B. Q., Tao N. J. Nano Lett. 2004;4:267–271.

Komoto Y., Fujii S., Kiguchi M. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017;8:025007.

Osawa M., Matsuda N., Yoshii K., Uchida I. J. Phys. Chem. 1994;98:12702–12707.

Xu P., Kang L. L., Mack N. H., Schanze K. S., Han X. J., Wang H. L. Sci. Rep. 2013;3:2997. PubMed PMC

Zheng J. T., Liu J. Y., Zhuo Y. J., Li R. H., Jin X., Yang Y., Chen Z. B., Shi J., Xiao Z. Y., Hong W. J., Tian Z. Q. Chem. Sci. 2018;9:5033–5038. PubMed PMC

Huang Y. F., Zhu H. P., Liu G. K., Wu D. Y., Ren B., Tian Z. Q. J. Am. Chem. Soc. 2010;132:9244–9246. PubMed

Lombardi J. R., Birke R. L., Lu T., Xu J. J. Chem. Phys. 1986;84:4174–4180.

Neaton J. B., Hybertsen M. S., Louie S. G. Phys.Phys. Rev. Lett.Rev. Lett. 2006;97:216405. PubMed

Flores F., Ortega J., Vazquez H. Phys. Chem. Chem. Phys. 2009;11:8658–8675. PubMed

Quek S. Y., Venkataraman L., Choi H. J., Louie S. G., Hybertsen M. S., Neaton J. B. Nano Lett. 2007;7:3477–3482. PubMed

Tsutsui M., Teramae Y., Kurokawa S., Sakai A. Appl. Phys. Lett. 2006;89:163111.

Sergueev N., Tsetseris L., Varga K., Pantelides S. Phys. Rev. B: Condens. Matter Mater. Phys. 2010;82:073106.

Pontes R. B., Rocha A. R., Sanvito S., Fazzio A., da Silva A. J. ACS Nano. 2011;5:795–804. PubMed

Komoto Y., Fujii S., Nakamura H., Tada T., Nishino T., Kiguchi M. Sci. Rep. 2016;6:26606. PubMed PMC

Todorov T. N. Philos. Mag. B. 1998;77:965–973.

Lü J.-T., Brandbyge M., Hedegård P., Todorov T. N., Dundas D. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;85:245444.

Todorov T. N., Hoekstra J., Sutton A. P. Philos. Mag. B. 2000;80:421–455.

Zhang R. X., Rungger I., Sanvito S., Hou S. M. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:085445.

Huang Z., Chen F., Bennett P. A., Tao N. J. Am. Chem. Soc. 2007;129:13225–13231. PubMed

Tsutsui M., Taniguchi M., Kawai T. Nano Lett. 2008;8:3293–3297. PubMed

Di Ventra M., Electrical Transport in Nanoscale Systems, Cambridge Univ. Press, Cambridge, 2008.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Resolving molecular frontier orbitals in molecular junctions with kHz resolution

. 2024 Sep 23 ; 15 (42) : 17328-36. [epub] 20240923

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...