Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31367301
PubMed Central
PMC6615215
DOI
10.1039/c9sc00701f
PII: c9sc00701f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Single-molecule junctions are ideal test beds for investigating the fundamentals of charge transport at the nanoscale. Conducting properties are strongly dependent on the metal-molecule interface geometry, which, however, is very poorly characterized due to numerous experimental challenges. We report on a new methodology for characterizing the adsorption site of single-molecule junctions through the combination of surface enhanced Raman scattering (SERS), current-voltage (I-V) curve measurements, and density functional theory simulations. This new methodology discriminates between three different adsorption sites for benzenedithiol and aminobenzenethiol junctions, which cannot be identified by solo measurements of either SERS or I-V curves. Using this methodology, we determine the interface geometry of these two prototypical molecules at the junction and its time evolution. By modulating the applied voltage, we can change and monitor the distribution of adsorption sites at the junction.
Graduate School of Engineering Nagoya Institute of Technology Gokiso Showa Nagoya 466 8555 Japan
Institute of Applied Physics University of Tsukuba Tennodai 1 1 1 Tsukuba 305 8573 Japan
Zobrazit více v PubMed
Aviram A., Ratner M. A. Chem. Phys. Lett. 1974;29:277–283.
Kiguchi M., Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory, Springer, Singapore, 2016.
Song H., Reed M. A., Lee T. Adv. Mater. 2011;23:1583–1608. PubMed
Tao N. J. Nat. Nanotechnol. 2006;1:173–181. PubMed
Song H., Kim Y., Jang Y. H., Jeong H., Reed M. A., Lee T. Nature. 2009;462:1039–1043. PubMed
Fujii S., Marques-Gonzalez S., Shin J. Y., Shinokubo H., Masuda T., Nishino T., Arasu N. P., Vazquez H., Kiguchi M. Nat. Commun. 2017;8:15984. PubMed PMC
Venkataraman L., Klare J. E., Tam I. W., Nuckolls C., Hybertsen M. S., Steigerwald M. L. Nano Lett. 2006;6:458–462. PubMed
Kim Y., Pietsch T., Erbe A., Belzig W., Scheer E. Nano Lett. 2011;11:3734–3738. PubMed
Karimi M. A., Bahoosh S. G., Herz M., Hayakawa R., Pauly F., Scheer E. Nano Lett. 2016;16:1803–1807. PubMed
Isshiki Y., Fujii S., Nishino T., Kiguchi M. J. Am. Chem. Soc. 2018;140:3760–3767. PubMed
Leary E., Zotti L. A., Miguel D., Marquez I. R., Palomino-Ruiz L., Cuerva J. M., Rubio-Bollinger G., Gonzalez M. T., Agrait N. J. Phys. Chem. C. 2018;122:3211–3218.
Terada S., Yokoyama T., Sakano M., Imanishi A., Kitajima Y., Kiguchi M., Okamoto Y., Ohta T. Surf. Sci. 1998;414:107–117.
Haiss W., Wang C. S., Grace I., Batsanov A. S., Schiffrin D. J., Higgins S. J., Bryce M. R., Lambert C. J., Nichols R. J. Nat. Mater. 2006;5:995–1002. PubMed
Yoshinobu J., Takagi N., Kawai M. Chem. Phys. Lett. 1993;211:48–52.
Hihath J., Arroyo C. R., Rubio-Bollinger G., Tao N., Agrait N. Nano Lett. 2008;8:1673–1678. PubMed
Nie S. Science. 1997;275:1102–1106. PubMed
Phan-Quang G. C., Lee H. K., Teng H. W., Koh C. S. L., Yim B. Q., Tan E. K. M., Tok W. L., Phang I. Y., Ling X. Y. Angew. Chem., Int. Ed. 2018;57:5792–5796. PubMed
Ioffe Z., Shamai T., Ophir A., Noy G., Yutsis I., Kfir K., Cheshnovsky O., Selzer Y. Nat. Nanotechnol. 2008;3:727–732. PubMed
Liu Z., Ding S. Y., Chen Z. B., Wang X., Tian J. H., Anema J. R., Zhou X. S., Wu D. Y., Mao B. W., Xu X., Ren B., Tian Z. Q. Nat. Commun. 2011;2:305. PubMed PMC
Ward D. R., Corley D. A., Tour J. M., Natelson D. Nat. Nanotechnol. 2011;6:33–38. PubMed
Bi H., Palma C. A., Gong Y. X., Hasch P., Elbing M., Mayor M., Reichert J., Barth J. V. J. Am. Chem. Soc. 2018;140:4835–4840. PubMed
Kaneko S., Murai D., Marques-Gonzalez S., Nakamura H., Komoto Y., Fujii S., Nishino T., Ikeda K., Tsukagoshi K., Kiguchi M. J. Am. Chem. Soc. 2016;138:1294–1300. PubMed
Zotti L. A., Kirchner T., Cuevas J. C., Pauly F., Huhn T., Scheer E., Erbe A. Small. 2010;6:1529–1535. PubMed
Reed M. A., Zhou C., Muller C. J., Burgin T. P., Tour J. M. Science. 1997;278:252–254.
Kergueris C., Bourgoin J. P., Palacin S., Esteve D., Urbina C., Magoga M., Joachim C. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:12505–12513.
Tsutsui M., Shoji K., Taniguchi M., Kawai T. Nano Lett. 2008;8:345–349. PubMed
Soler J. M., Artacho E., Gale J. D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D. J. Phys.: Condens. Matter. 2002;14:2745–2779. PubMed
Brandbyge M., Mozos J. L., Ordejon P., Taylor J., Stokbro K. Phys. Rev. B: Condens. Matter Mater. Phys. 2002;65:165401.
Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. PubMed
Tian J. H., Liu B., Li X., Yang Z. L., Ren B., Wu S. T., Tao N., Tian Z. Q. J. Am. Chem. Soc. 2006;128:14748–14749. PubMed
Xiao X. Y., Xu B. Q., Tao N. J. Nano Lett. 2004;4:267–271.
Komoto Y., Fujii S., Kiguchi M. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017;8:025007.
Osawa M., Matsuda N., Yoshii K., Uchida I. J. Phys. Chem. 1994;98:12702–12707.
Xu P., Kang L. L., Mack N. H., Schanze K. S., Han X. J., Wang H. L. Sci. Rep. 2013;3:2997. PubMed PMC
Zheng J. T., Liu J. Y., Zhuo Y. J., Li R. H., Jin X., Yang Y., Chen Z. B., Shi J., Xiao Z. Y., Hong W. J., Tian Z. Q. Chem. Sci. 2018;9:5033–5038. PubMed PMC
Huang Y. F., Zhu H. P., Liu G. K., Wu D. Y., Ren B., Tian Z. Q. J. Am. Chem. Soc. 2010;132:9244–9246. PubMed
Lombardi J. R., Birke R. L., Lu T., Xu J. J. Chem. Phys. 1986;84:4174–4180.
Neaton J. B., Hybertsen M. S., Louie S. G. Phys.Phys. Rev. Lett.Rev. Lett. 2006;97:216405. PubMed
Flores F., Ortega J., Vazquez H. Phys. Chem. Chem. Phys. 2009;11:8658–8675. PubMed
Quek S. Y., Venkataraman L., Choi H. J., Louie S. G., Hybertsen M. S., Neaton J. B. Nano Lett. 2007;7:3477–3482. PubMed
Tsutsui M., Teramae Y., Kurokawa S., Sakai A. Appl. Phys. Lett. 2006;89:163111.
Sergueev N., Tsetseris L., Varga K., Pantelides S. Phys. Rev. B: Condens. Matter Mater. Phys. 2010;82:073106.
Pontes R. B., Rocha A. R., Sanvito S., Fazzio A., da Silva A. J. ACS Nano. 2011;5:795–804. PubMed
Komoto Y., Fujii S., Nakamura H., Tada T., Nishino T., Kiguchi M. Sci. Rep. 2016;6:26606. PubMed PMC
Todorov T. N. Philos. Mag. B. 1998;77:965–973.
Lü J.-T., Brandbyge M., Hedegård P., Todorov T. N., Dundas D. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;85:245444.
Todorov T. N., Hoekstra J., Sutton A. P. Philos. Mag. B. 2000;80:421–455.
Zhang R. X., Rungger I., Sanvito S., Hou S. M. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:085445.
Huang Z., Chen F., Bennett P. A., Tao N. J. Am. Chem. Soc. 2007;129:13225–13231. PubMed
Tsutsui M., Taniguchi M., Kawai T. Nano Lett. 2008;8:3293–3297. PubMed
Di Ventra M., Electrical Transport in Nanoscale Systems, Cambridge Univ. Press, Cambridge, 2008.