Identification and Validation of Reference Genes in Clostridium beijerinckii NRRL B-598 for RT-qPCR Using RNA-Seq Data
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33815328
PubMed Central
PMC8012504
DOI
10.3389/fmicb.2021.640054
Knihovny.cz E-zdroje
- Klíčová slova
- Clostridium, HKG, biofuel, housekeeping genes, non-model organisms,
- Publikační typ
- časopisecké články MeSH
Gene expression analysis through reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) depends on correct data normalization by reference genes with stable expression. Although Clostridium beijerinckii NRRL B-598 is a promising Gram-positive bacterium for the industrial production of biobutanol, validated reference genes have not yet been reported. In this study, we selected 160 genes with stable expression based on an RNA sequencing (RNA-Seq) data analysis, and among them, seven genes (zmp, rpoB1, rsmB, greA, rpoB2, topB2, and rimO) were selected for experimental validation by RT-qPCR and gene ontology (GO) enrichment analysis. According to statistical analyses, zmp and greA were the most stable and suitable reference genes for RT-qPCR normalization. Furthermore, our methodology can be useful for selection of the reference genes in other strains of C. beijerinckii and it also suggests that the RNA-Seq data can be used for the initial selection of novel reference genes, however, their validation is required.
Zobrazit více v PubMed
Agu C. V., Ujor V., Ezeji T. C. (2019). Metabolic engineering of Clostridium beijerinckii to improve glycerol metabolism and furfural tolerance. Biotechnol. Biofuels 12:50. 10.1186/s13068-019-1388-9 PubMed DOI PMC
Alexa A., Rahnenfurher J. (2020). topGO: Enrichment Analysis for Gene Ontology.
Andersen C. L., Jensen J. L., Ørntoft T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64 5245–5250. 10.1158/0008-5472.CAN-04-0496 PubMed DOI
Boda E., Pini A., Hoxha E., Parolisi R., Tempia F. (2009). Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J. Mol. Neurosci. 37 238–253. 10.1007/s12031-008-9128-9 PubMed DOI
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Breidenbach M. A., Brunger A. T. (2004). Substrate recognition strategy for butulinum neurotoxin serotype A. Nature 432 925–929. 10.1038/nature03123 PubMed DOI
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55 611–622. 10.1373/clinchem.2008.112797 PubMed DOI
Cafardi V., Biagini M., Martinelli M., Leuzzi R., Rubino J. T., Cantini F., et al. (2013). Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. PLoS One 8:e81306. 10.1371/journal.pone.0081306 PubMed DOI PMC
Canzar S., Elbassioni K., Jones M., Mestre J. (2016). Resolving conflicting predictions from multimapping reads. J. Comput. Biol. 23 203–217. 10.1089/cmb.2015.0164 PubMed DOI
Carvalho D. M., de Sá P. H., Castro T. L. P., Carvalho R. D., Pinto A., Gil D. J. P., et al. (2014). Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data. Antonie van Leeuwenhoek 106 605–614. 10.1007/s10482-014-0231-3 PubMed DOI
Chapman J. R., Waldenström J. (2015). With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS One 10:e0141853. 10.1371/journal.pone.0141853 PubMed DOI PMC
Chi C., Shen Y., Yin L., Ke X., Han D., Zuo Y. (2016). Selection and validation of reference genes for gene expression analysis in Vigna angularis using quantitative real-time RT-PCR. PLoS One 11:e0168479. 10.1371/journal.pone.0168479 PubMed DOI PMC
Delorenzo D. M., Moon T. S. (2018). Selection of stable reference genes for RT-qPCR in Rhodococcus opacus PD630. Sci. Rep. 8:6019. 10.1038/s41598-018-24486-w PubMed DOI PMC
Derveaux S., Vandesompele J., Hellemans J. (2010). How to do successful gene expression analysis using real-time PCR. Methods 50 227–230. 10.1016/j.ymeth.2009.11.001 PubMed DOI
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Ewels P., Magnusson M., Lundin S., Käller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC
Ginzinger D. G. (2002). Gene quantification using real-time quantitative PCR. Exp. Hematol. 30 503–512. 10.1016/S0301-472X(02)00806-8 PubMed DOI
Gomes A. ÉI., Stuchi L. P., Siqueira N. M. G., Henrique J. B., Vicentini R., Ribeiro M. L., et al. (2018). Selection and validation of reference genes for gene expression studies in Klebsiella pneumoniae using reverse transcription quantitative real-time PCR. Sci. Rep. 8:9001. 10.1038/s41598-018-27420-2 PubMed DOI PMC
Han X., Lu M., Chen Y., Zhan Z., Cui Q., Wang Y. (2012). Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development. PLoS One 7:e43084. 10.1371/journal.pone.0043084 PubMed DOI PMC
Hu Y., Xie S., Yao J. (2016). Identification of novel reference genes suitable for qRT-PCR normalization with respect to the zebrafish developmental stage. PLoS One 11:e0149277. 10.1371/journal.pone.0149277 PubMed DOI PMC
Jo J., Choi S., Oh J., Lee S.-G., Choi S. Y., Kim K. K., et al. (2019). Conventionally used reference genes are not outstanding for normalization of gene expression in human cancer research. BMC Bioinformatics 20(Suppl. 10):245. 10.1186/s12859-019-2809-2 PubMed DOI PMC
Kirk D. G., Palonen E., Korkeala H., Lindström M. (2014). Evaluation of normalization reference genes for RT-qPCR analysis of spo0A and four sporulation sigma factor genes in Clostridium botulinum group I strain ATCC 3502. Anaerobe 26 14–19. 10.1016/j.anaerobe.2013.12.003 PubMed DOI
Kopylova E., Noé L., Touzet H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28 3211–3217. 10.1093/bioinformatics/bts611 PubMed DOI
Kyuma T., Kimura S., Hanada Y., Suzuki T., Sekimizu K., Kaito C. (2015). Ribosomal RNA methyltransferases contribute to Staphylococcus aureus virulence. FEBS J. 282 2570–2584. 10.1111/febs.13302 PubMed DOI
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Liang P., Guo Y., Zhou X., Gao X. (2014). Expression profiling in Bemisia tabaci under insecticide treatment: indicating the necessity for custom reference gene selection. PLoS One 9:e87514. 10.1371/journal.pone.0087514 PubMed DOI PMC
Liao Y., Smyth G. K., Shi W. (2014). FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30 923–930. 10.1093/bioinformatics/btt656 PubMed DOI
Liao Y., Smyth G. K., Shi W. (2019). The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47:e47. 10.1093/nar/gkz114 PubMed DOI PMC
Lioy V. S., Goussard S., Guerineau V., Yoon E. J., Courvalin P., Galimand M., et al. (2014). Aminoglycoside resistance 16S rRNA methyltransferases block endogenous methylation, affect translation efficiency and fitness of the host. RNA 20 382–391. 10.1261/rna.042572.113 PubMed DOI PMC
Liu D., Hao K., Wang W., Peng C., Dai Y., Jin R., et al. (2017). Rv2629 overexpression delays Mycobacterium smegmatis and Mycobacteria tuberculosis entry into log-phase and increases pathogenicity of Mycobacterium smegmatis in mice. Front. Microbiol. 8:2231. 10.3389/fmicb.2017.02231 PubMed DOI PMC
Liu J., Tan Y., Yang X., Chen X., Li F. (2013). Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR. J. Biosci. Bioeng. 116 460–464. 10.1016/j.jbiosc.2013.04.011 PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Lupien A., Gingras H., Leprohon P., Ouellette M. (2015). Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA. J. Antimicrob. Chemother. 70 2973–2980. 10.1093/jac/dkv211 PubMed DOI
Marr M. T., Roberts J. W. (2000). Function of transcription cleavage factors GreA and GreB at a regulatory pause site. Mol. Cell 6 1275–1285. 10.1016/S1097-2765(00)00126-X PubMed DOI
Metcalf D., Sharif S., Weese J. S. (2010). Evaluation of candidate reference genes in Clostridium difficile for gene expression normalization. Anaerobe 16 439–443. 10.1016/j.anaerobe.2010.06.007 PubMed DOI
Patakova P., Branska B., Sedlar K., Vasylkivska M., Jureckova K., Kolek J., et al. (2019). Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci. Rep. 9:1371. 10.1038/s41598-018-37679-0 PubMed DOI PMC
Patakova P., Kolek J., Jureckova K., Branska B., Sedlar K., Vasylkivska M., et al. (2020). Deeper below the surface—transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock. Microbiologyopen 10:e1146. 10.1002/mbo3.1146 PubMed DOI PMC
Peng S., Stephan R., Hummerjohann J., Tasara T. (2014). Evaluation of three reference genes of Escherichia coli for mRNA expression level normalization in view of salt and organic acid stress exposure in food. FEMS Microbiol. Lett. 355 78–82. 10.1111/1574-6968.12447 PubMed DOI
Pombo M. A., Zheng Y., Fei Z., Martin G. B., Rosli H. G. (2017). Use of RNA-seq data to identify and validate RT-qPCR reference genes for studying the tomato-Pseudomonas pathosystem. Sci. Rep. 7:44905. 10.1038/srep44905 PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 590–596. 10.1093/nar/gks1219 PubMed DOI PMC
Roberts A., Schaeffer L., Pachter L. (2013). Updating RNA-Seq analyses after re-annotation. Bioinformatics 29 1631–1637. 10.1093/bioinformatics/btt197 PubMed DOI PMC
Rocha D. J. P., Santos C. S., Pacheco L. G. C. (2015). Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Antonie van Leeuwenhoek 108 685–693. 10.1007/s10482-015-0524-1 PubMed DOI
Sedlar K., Kolek J., Gruber M., Jureckova K., Branska B., Csaba G., et al. (2019). A transcriptional response of Clostridium beijerinckii NRRL B-598 to a butanol shock. Biotechnol. Biofuels 12 1–16. 10.1186/s13068-019-1584-7 PubMed DOI PMC
Sedlar K., Kolek J., Provaznik I., Patakova P. (2017). Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J. Biotechnol. 244 1–3. 10.1016/j.jbiotec.2017.01.003 PubMed DOI
Sedlar K., Koscova P., Vasylkivska M., Branska B., Kolek J., Kupkova K., et al. (2018). Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq. BMC Genomics 19:415. 10.1186/s12864-018-4805-8 PubMed DOI PMC
Silver N., Best S., Jiang J., Thein S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7:33. 10.1186/1471-2199-7-33 PubMed DOI PMC
Song Y., Wang Y., Guo D., Jing L. (2019). Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw. BMC Plant Biol. 19:20. 10.1186/s12870-019-1629-x PubMed DOI PMC
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034. 10.1186/gb-2002-3-7-research0034 PubMed DOI PMC
Vasylkivska M., Jureckova K., Branska B., Sedlar K., Kolek J., Provaznik I., et al. (2019). Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. PLoS One 14:e0224560. 10.1371/journal.pone.0224560 PubMed DOI PMC
Wagner G. P., Kin K., Lynch V. J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131 281–285. 10.1007/s12064-012-0162-3 PubMed DOI
Wang C., Ye F., Kumar V., Gao Y. G., Zhang L. H. (2014). BswR controls bacterial motility and biofilm formation in Pseudomonas aeruginosa through modulation of the small RNA rsmZ. Nucleic Acids Res. 42 4563–4576. 10.1093/nar/gku106 PubMed DOI PMC
Wang Y., Li X., Mao Y., Blaschek H. P. (2011). Single-nucleotide resolution analysis of the transcriptome structure of Clostridium beijerinckii NCIMB 8052 using RNA-Seq. BMC Genomics 12:479. 10.1186/1471-2164-12-479 PubMed DOI PMC
Wang Y., Li X., Mao Y., Blaschek H. P. (2012). Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics 13:102. 10.1186/1471-2164-13-102 PubMed DOI PMC
Wang Y., Zhang Z. T., Seo S. O., Lynn P., Lu T., Jin Y. S., et al. (2016). Bacterial genome editing with CRISPR-Cas9: deletion, integration, single nucleotide modification, and desirable “clean” mutant selection in Clostridium beijerinckii as an example. ACS Synth. Biol. 5 721–732. 10.1021/acssynbio.6b00060 PubMed DOI
Xie F., Xiao P., Chen D., Xu L., Zhang B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 10.1007/s11103-012-9885-2 ∗∗Q. PubMed DOI
Xin X., Cheng C., Du G., Chen L., Xue C. (2020). Metabolic engineering of histidine kinases in Clostridium beijerinckii for enhanced butanol production. Front. Bioeng. Biotechnol. 8:214. 10.3389/fbioe.2020.00214 PubMed DOI PMC
Zytnicki M. (2017). mmquant: how to count multi-mapping reads? BMC Bioinformatics 18:411. 10.1186/s12859-017-1816-4 PubMed DOI PMC