Deeper below the surface-transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33319506
PubMed Central
PMC7884928
DOI
10.1002/mbo3.1146
Knihovny.cz E-zdroje
- Klíčová slova
- Clostridium beijerinckii, ABE fermentation, butanol shock, transcriptome analysis,
- MeSH
- biologický transport genetika MeSH
- bioreaktory mikrobiologie MeSH
- buněčná membrána metabolismus MeSH
- butanoly toxicita MeSH
- Clostridium beijerinckii účinky léků genetika metabolismus MeSH
- fyziologický stres genetika MeSH
- glukosa metabolismus MeSH
- glykolýza genetika fyziologie MeSH
- mastné kyseliny metabolismus MeSH
- plasmalogeny biosyntéza MeSH
- proteiny teplotního šoku metabolismus MeSH
- quorum sensing genetika MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- butanoly MeSH
- glukosa MeSH
- mastné kyseliny MeSH
- plasmalogeny MeSH
- proteiny teplotního šoku MeSH
The main bottleneck in the return of industrial butanol production from renewable feedstock through acetone-butanol-ethanol (ABE) fermentation by clostridia, such as Clostridium beijerinckii, is the low final butanol concentration. The problem is caused by the high toxicity of butanol to the production cells, and therefore, understanding the mechanisms by which clostridia react to butanol shock is of key importance. Detailed analyses of transcriptome data that were obtained after butanol shock and their comparison with data from standard ABE fermentation have resulted in new findings, while confirmed expected population responses. Although butanol shock resulted in upregulation of heat shock protein genes, their regulation is different than was assumed based on standard ABE fermentation transcriptome data. While glucose uptake, glycolysis, and acidogenesis genes were downregulated after butanol shock, solventogenesis genes were upregulated. Cyclopropanation of fatty acids and formation of plasmalogens seem to be significant processes involved in cell membrane stabilization in the presence of butanol. Surprisingly, one of the three identified Agr quorum-sensing system genes was upregulated. Upregulation of several putative butanol efflux pumps was described after butanol addition and a large putative polyketide gene cluster was found, the transcription of which seemed to depend on the concentration of butanol.
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
Department of Biotechnology University of Chemistry and Technology Prague Prague Czech Republic
Zobrazit více v PubMed
Alsaker, K. V. , Paredes, C. , & Papoutsakis, E. T. (2010). Metabolite stress and tolerance in the production of biofuels and chemicals: Gene‐expression‐based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe PubMed DOI
Baerends, R. J. S. , Smits, W. K. , de Jong, A. , Hamoen, L. W. , Kok, J. , & Kuipers, O. P. (2004). Genome2D: A visualization tool for the rapid analysis of bacterial transcriptome data. Genome Biology, 5(5), R37 10.1186/gb-2004-5-5-r37 PubMed DOI PMC
Baumann, N. A. , Hagen, P. O. , & Goldfine, H. (1965). Phospholipids of PubMed
Behnken, S. , & Hertweck, C. (2012). Cryptic polyketide synthase genes in non‐pathogenic PubMed DOI PMC
Branska, B. , Fortova, L. , Dvorakova, M. , Liu, H. , Patakova, P. , Zhang, J. , & Melzoch, M. (2020). Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production. Renewable Energy, 145, 1941–1948. 10.1016/j.renene.2019.07.094 DOI
Branska, B. , Pechacova, Z. , Kolek, J. , Vasylkivska, M. , & Patakova, P. (2018). Flow cytometry analysis of PubMed DOI PMC
Chang, Y. , & Cronan, J. E. (1999). Membrane cyclopropane fatty acid content is a major factor in acid resistance of PubMed DOI
Cruz‐Morales, P. , Orellana, C. A. , Moutafis, G. , Moonen, G. , Rincon, G. , Nielsen, L. K. , & Marcellin, E. (2019). Revisiting the evolution and taxonomy of PubMed DOI PMC
De Mendoza, D. , Schujman, G. E. , & Aguilar, P. S. (2002). Biosynthesis and function of membrane lipids In Sonenshein A., Losick R., & Hoch J. (Eds.), Bacillus subtilis and its closest relatives (pp. 43–55). American Society of Microbiology.
Deng, W. , Li, C. , & Xie, J. (2013). The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cellular Signalling, 25(7), 1608–1613. 10.1016/j.cellsig.2013.04.003 PubMed DOI
Ezeji, T. , Qureshi, N. , & Blaschek, H. P. (2007). Butanol production from agricultural residues: Impact of degradation products on PubMed DOI
Fisher, M. A. , Boyarskiy, S. , Yamada, M. R. , Kong, N. , Bauer, S. , & Tullman‐Ercek, D. (2014). Enhancing tolerance to short‐chain alcohols by engineering the PubMed DOI
Goldfine, H. (2010). The appearance, disappearance and reappearance of plasmalogens in evolution. Progress in Lipid Research, 49(4), 493–498. 10.1016/j.plipres.2010.07.003 PubMed DOI
Goldfine, H. , & Johnston, N. (2005). Membrane lipids of
Goodson, J. R. , Klupt, S. , Zhang, C. , Straight, P. , & Winkler, W. C. (2017). LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in PubMed DOI PMC
Han, X. , & Gross, R. W. (1990). Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs. Biochemistry, 29(20), 4992–4996. 10.1021/bi00472a032 PubMed DOI
Herman, N. A. , Kim, S. J. , Li, J. S. , Cai, W. , Koshino, H. , & Zhang, W. (2017). The industrial anaerobe PubMed DOI PMC
Ingram, L. O. , & Buttke, T. M. (1985). Effects of alcohols on microorganisms. Advances in Microbial Physiology, 25, 253–300. 10.1016/S0065-2911(08)60294-5 PubMed DOI
Janssen, H. , Grimmler, C. , Ehrenreich, A. , Bahl, H. , & Fischer, R. J. (2012). A transcriptional study of acidogenic chemostat cells of PubMed DOI
Johnston, N. C. , Goldfine, H. , Malthaner, M. , & Seelig, J. (1987). 2H‐NMR studies on ether lipid‐rich bacterial membranes: Deuterium order profile of PubMed DOI
Kim, H. J. , Hwang, N. R. , & Lee, K. J. (2007). Heat shock responses for understanding diseases of protein denaturation. Molecules and Cells, 23(2), 123–131. PubMed
Koga, Y. , & Goldfine, H. (1984). Biosynthesis of phospholipids in PubMed PMC
Kolek, J. , Patakova, P. , Melzoch, K. , Sigler, K. , & Rezanka, T. (2015). Changes in membrane plasmalogens of PubMed DOI PMC
Lee, J. , & Blaschek, H. P. (2001). Glucose uptake in PubMed PMC
Lee, J. , Mitchell, W. J. , Tangney, M. , & Blaschek, H. P. (2005). Evidence for the presence of an alternative glucose transport system in PubMed DOI PMC
Lee, S. Y. , Park, J. H. , Jang, S. H. , Nielsen, L. K. , Kim, J. , & Jung, K. S. (2008). Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 101(2), 209–228. 10.1002/bit.22003 PubMed DOI
Lepage, C. , Fayolle, F. , Hermann, M. , & Vandecasteele, J. P. (1987). Changes in membrane lipid composition of DOI
Letzel, A. C. , Pidot, S. J. , & Hertweck, C. (2013). A genomic approach to the cryptic secondary metabolome of the anaerobic world. Natural Product Reports, 30(3), 392–428. 10.1039/c2np20103h PubMed DOI
Liao, Y. , Smyth, G. K. , & Shi, W. (2014). FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. 10.1093/bioinformatics/btt656 PubMed DOI
Liao, Z. , Zhang, Y. , Luo, S. , Suo, Y. , Zhang, S. , & Wang, J. (2017). Improving cellular robustness and butanol titers of PubMed DOI
Love, M. I. , Huber, W. , & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15(12), 550 10.1186/s13059-014-0550-8 PubMed DOI PMC
MacDonald, D. L. , & Goldfine, H. (1991). Effects of solvents and alcohols on the polar lipid composition of PubMed PMC
Maiti, S. , Sarma, S. J. , Brar, S. K. , Le Bihan, Y. , Drogui, P. , Buelna, G. , & Verma, M. (2016). Agro‐industrial wastes as feedstock for sustainable bio‐production of butanol by DOI
Mann, M. S. , Dragovic, Z. , Schirrmacher, G. , & Lutke‐Eversloh, T. (2012). Over‐expression of stress protein‐encoding genes helps PubMed DOI
Martin, W. F. , & Sousa, F. L. (2016). Early microbial evolution: The age of anaerobes. Cold Spring Harbor Perspectives in Biology, 8(2), a018127 10.1101/cshperspect.a018127 PubMed DOI PMC
Moon, H. G. , Jang, Y. S. , Cho, C. , Lee, J. , Binkley, R. , & Lee, S. Y. (2016). One hundred years of clostridial butanol fermentation. FEMS Microbiology Letters, 363(3), fnw001 10.1093/femsle/fnw001 PubMed DOI
Mukhopadhyay, A. (2015). Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends in Microbiology, 23(8), 498–508. 10.1016/j.tim.2015.04.008 PubMed DOI
Murarka, P. , Bagga, T. , Singh, P. , Rangra, S. , & Srivastava, P. (2019). Isolation and identification of a TetR family protein that regulates the biodesulfurization operon. AMB Express, 9(1), 71 10.1186/s13568-019-0801-x PubMed DOI PMC
Nguyen Le Minh, P. , de Cima, S. , Bervoets, I. , Maes, D. , Rubio, V. , & Charlier, D. (2015). Ligand binding specificity of RutR, a member of the TetR family of transcription regulators in PubMed DOI PMC
Patakova, P. , Branska, B. , Sedlar, K. , Vasylkivska, M. , Jureckova, K. , Kolek, J. , Koscova, P. , & Provaznik, I. (2019). Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in PubMed DOI PMC
Patakova, P. , Kolek, J. , Sedlar, K. , Koscova, P. , Branska, B. , Kupkova, K. , Paulova, L. , & Provaznik, I. (2018). Comparative analysis of high butanol tolerance and production in clostridia. Biotechnology Advances, 36(3), 721–738. 10.1016/j.biotechadv.2017.12.004 PubMed DOI
Pini, C. , Bernal, P. , Godoy, P. , Ramos, J. , & Segura, A. (2009). Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in PubMed DOI PMC
Robinson, M. D. , McCarthy, D. J. , & Smyth, G. K. (2010). EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
Sardessai, Y. , & Bhosle, S. (2002). Tolerance of bacteria to organic solvents. Research in Microbiology, 153(5), 263–268. 10.1016/S0923-2508(02)01319-0 PubMed DOI
Sedlar, K. , Kolek, J. , Gruber, M. , Jureckova, K. , Branska, B. , Csaba, G. , Vasylkivska, M. , Zimmer, R. , Patakova, P. , & Provaznik, I. (2019). A transcriptional response of PubMed DOI PMC
Sedlar, K. , Kolek, J. , Provaznik, I. , & Patakova, P. (2017). Reclassification of non‐type strain PubMed DOI
Sedlar, K. , Kolek, J. , Skutkova, H. , Branska, B. , Provaznik, I. , & Patakova, P. (2015). Complete genome sequence of PubMed DOI
Sedlar, K. , Koscova, P. , Vasylkivska, M. , Branska, B. , Kolek, J. , Kupkova, K. , Patakova, P. , & Provaznik, I. (2018). Transcription profiling of butanol producer PubMed DOI PMC
Shi, Z. , & Blaschek, H. P. (2008). Transcriptional analysis of PubMed DOI PMC
Sikkema, J. , de Bont, J. A. , & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201–222. PubMed PMC
Tomas, C. A. , Beamish, J. , & Papoutsakis, E. T. (2004). Transcriptional analysis of butanol stress and tolerance in PubMed DOI PMC
Tomas, C. A. , Welker, N. E. , & Papoutsakis, E. T. (2003). Overexpression of PubMed DOI PMC
Vasylkivska, M. , Jureckova, K. , Branska, B. , Sedlar, K. , Kolek, J. , Provaznik, I. , & Patakova, P. (2019). Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol‐producing PubMed DOI PMC
Vollherbst Schneck, K. , Sands, J. A. , & Montenecourt, B. S. (1984). Effect of butanol on lipid composition and fluidity of PubMed PMC
Zhao, Y. , Hindorff, L. A. , Chuang, A. , Monroe‐Augustus, M. , Lyristis, M. , Harrison, M. L. , Rudolph, F. B. , & Bennett, G. N. (2003). Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in PubMed DOI PMC
Zuber, U. , Drzewiecki, K. , & Hecker, M. (2001). Putative sigma factor SigI (YkoZ) of PubMed DOI PMC