Ectropis oblique Prout (Lepidoptera: Geometridae) is one of the main pests that damages the tea crop in Southeast Asia. To understand the molecular mechanisms of its feeding biology, transcriptomes of the alimentary tract (AT) and of the body minus the AT of E. oblique were successfully sequenced and analyzed in this study. A total of 36,950 unigenes from de novo sequences were assembled. After analysis using six annotation databases (e.g., Gene Ontology, Kyoto Encyclopedia of Genes and Genome, and NCBI nr), a series of putative genes were found for this insect species that were related to digestion, detoxification, the immune system, and Bacillus thuringiensis (Bt) receptors. From this series of genes, 21 were randomly selected to verify the relative expression levels of transcripts using quantitative real-time polymerase chain reaction. These results will provide an invaluable genomic resource for future studies on the molecular mechanisms of E. oblique, which will be useful in developing biological control strategies for this pest.
- MeSH
- Larva genetics growth & development MeSH
- Moths genetics growth & development MeSH
- Sequence Analysis, DNA MeSH
- Gene Expression Profiling MeSH
- Transcriptome * MeSH
- Digestive System MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Recent technological advances have made next-generation sequencing (NGS) a popular and financially accessible technique allowing a broad range of analyses to be done simultaneously. A huge amount of newly generated NGS data, however, require advanced software support to help both in analyzing the data and biologically interpreting the results. In this article, we describe SATrans (Software for Annotation of Transcriptome), a software package providing fast and robust functional annotation of novel sequences obtained from transcriptome sequencing. Moreover, it performs advanced gene ontology analysis of differentially expressed genes, thereby helping to interpret biologically-and in a user-friendly form-the quantitative changes in gene expression. The software is freely available and provides the possibility to work with thousands of sequences using a standard personal computer or notebook running on the Linux operating system.
Although our knowledge regarding oocyte quality and development has improved significantly, the molecular mechanisms that regulate and determine oocyte developmental competence are still unclear. Therefore, the objective of this study was to identify and analyze the transcriptome profiles of porcine oocytes derived from large or small follicles using RNA high-throughput sequencing technology. RNA libraries were constructed from oocytes of large (LO; 3-6 mm) or small (SO; 1.5-1.9 mm) ovarian follicles and then sequenced in an Illumina HiSeq4000. Transcriptome analysis showed a total of 14,557 genes were commonly detected in both oocyte groups. Genes related to the cell cycle, oocyte meiosis, and quality were among the top highly expressed genes in both groups. Differential expression analysis revealed 60 up- and 262 downregulated genes in the LO compared with the SO group. BRCA2, GPLD1, ZP3, ND3, and ND4L were among the highly abundant and highly significant differentially expressed genes (DEGs). The ontological classification of DEGs indicated that protein processing in endoplasmic reticulum was the top enriched pathway. In addition, biological processes related to cell growth and signaling, gene expression regulations, cytoskeleton, and extracellular matrix organization were among the highly enriched processes. In conclusion, this study provides new insights into the global transcriptome changes and the abundance of specific transcripts in porcine oocytes in correlation with follicle size.
- MeSH
- Gene Regulatory Networks physiology MeSH
- Oocytes metabolism MeSH
- Oogenesis genetics MeSH
- Ovarian Follicle cytology MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Swine genetics growth & development MeSH
- Signal Transduction genetics MeSH
- Gene Expression Profiling MeSH
- Transcriptome * MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Gene Expression Regulation, Developmental physiology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Hazelnut (Corylus), which has high commercial and nutritional benefits, is an important tree for producing nuts and nut oil consumed as ingredient especially in chocolate. While Corylus avellana L. (Euro-pean hazelnut, Betulaceae) and Corylus colurna L. (Turkish hazelnut, Betulaceae) are the two common hazelnut species in Europe, C. avellana L. (Tombul hazelnut) is grown as the most widespread hazelnut species in Turkey, and C. colurna L., which is the most important genetic resource for hazelnut breeding, exists naturally in Anatolia. We generated the transcriptome data of these two Corylus species and used these data for gene discovery and gene expression profiling. Total RNA from young leaves, flowers (male and female), buds, and husk shoots of C. avellana and C. colurna were used for two different libraries and were sequenced using Illumina HiSeq4000 with 100 bp paired-end reads. The transcriptome data 10.48 and 10.30 Gb of C. avellana and C. colurna, respectively, were assembled into 70,265 and 88,343 unigenes, respectively. These unigenes were functionally annotated using the TRAPID platform. We identified 25,312 and 27,051 simple sequen-ce repeats (SSRs) for C. avellana and C. colurna, respectively. TL1, GMPM1, N, 2MMP, At1g29670, CHIB1 unigenes were selected for validation with qPCR. The first de novo transcriptome data of C. co-lurna were used to compare data of C. avellana of commercial importance. These data constitute a valuable extension of the publicly available transcriptomic resource aimed at breeding, medicinal, and industrial research studies.
- MeSH
- Corylus * genetics metabolism MeSH
- Nuts MeSH
- Gene Expression Profiling MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Turkey MeSH
Staphylococcus aureus is a common biofilm-forming pathogen. Low doses of disinfectants have previously been reported to promote biofilm formation and to increase virulence. The aim of this study was to use transcriptome sequencing (RNA-seq) analysis to investigate global transcriptional changes in S. aureus in response to sublethal concentrations of the commonly used food industry disinfectants ethanol (EtOH) and chloramine T (ChT) and their combination (EtOH_ChT) in order to better understand the effects of these agents on biofilm formation. Treatment with EtOH and EtOH_ChT resulted in more significantly altered expression profiles than treatment with ChT. Our results revealed that EtOH and EtOH_ChT treatments enhanced the expression of genes responsible for regulation of gene expression (sigB), cell surface factors (clfAB), adhesins (sdrDE), and capsular polysaccharides (cap8EFGL), resulting in more intact biofilm. In addition, in this study we were able to identify the pathways involved in the adaptation of S. aureus to the stress of ChT treatment. Further, EtOH suppressed the effect of ChT on gene expression when these agents were used together at sublethal concentrations. These data show that in the presence of sublethal concentrations of tested disinfectants, S. aureus cells trigger protective mechanisms and try to cope with them.IMPORTANCE So far, the effect of disinfectants is not satisfactorily explained. The presented data will allow a better understanding of the mode of disinfectant action with regard to biofilm formation and the ability of bacteria to survive the treatment. Such an understanding could contribute to the effort to eliminate possible sources of bacteria, making disinfectant application as efficient as possible. Biofilm formation plays significant role in the spread and pathogenesis of bacterial species.
Decades of liver regeneration studies still left the termination phase least elucidated. However regeneration ending mechanisms are clinicaly relevant. We aimed to analyse the timing and transcriptional control of the latest phase of liver regeneration, both controversial. Male Wistar rats were subjected to 2/3 partial hepatectomy with recovery lasting from 1 to 14 days. Time-series microarray data were assessed by innovative combination of hierarchical clustering and principal component analysis and validated by real-time RT-PCR. Hierarchical clustering and principal component analysis in agreement distinguished three temporal phases of liver regeneration. We found 359 genes specifically altered during late phase regeneration. Gene enrichment analysis and manual review of microarray data suggested five pathways worth further study: PPAR signalling pathway; lipid metabolism; complement, coagulation and fibrinolytic cascades; ECM remodelling and xenobiotic biotransformation. Microarray findings pertinent for termination phase were substantiated by real-time RT-PCR. In conclusion, transcriptional profiling mapped late phase of liver regeneration beyond 5th day of recovery and revealed 5 pathways specifically acting at this time. Inclusion of longer post-surgery intervals brought improved coverage of regeneration time dynamics and is advisable for further works. Investigation into the workings of suggested pathways
- MeSH
- Transcription, Genetic MeSH
- Hepatectomy MeSH
- Liver * metabolism MeSH
- Rats MeSH
- Lipid Metabolism MeSH
- Disease Models, Animal MeSH
- Liver Diseases * genetics metabolism veterinary MeSH
- Rats, Wistar MeSH
- Peroxisome Proliferator-Activated Receptors metabolism MeSH
- Liver Regeneration * MeSH
- Gene Expression Regulation MeSH
- Transcriptome * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
BACKGROUND: Astrocytoma is the most prevalent form of primary brain cancer categorized into four histological grades by the World Health Organization. Investigation into individual grades of astrocytoma by previous studies has provided some insight into dysregulation of regulatory networks associated with increasing astrocytoma grades. However, further understanding of key mechanisms that distinguish different astrocytoma grades is required to facilitate targeted therapies. METHODS: In this study, we utilized a large cohort of publicly available RNA sequencing data from patients with diffuse astrocytoma (grade II), anaplastic astrocytoma (grade III), primary glioblastoma (grade IV), secondary glioblastoma (grade IV), recurrent glioblastoma (grade IV), and normal brain samples to identify genetic similarities and differences between these grades using bioinformatics applications. RESULTS: Our analysis revealed a distinct gene expression pattern between grade II astrocytoma and grade IV glioblastoma (GBM). We also identified genes that were exclusively expressed in each of the astrocytoma grades. Furthermore, we identified known and novel genes involved in key pathways in our study. Gene set enrichment analysis revealed a distinct expression pattern of transcriptional regulators in primary GBM. Further investigation into molecular processes showed that the genes involved in cell proliferation and invasion were shared across all subtypes of astrocytoma. Also, the number of genes involved in metastasis, regulation of cell proliferation, and apoptosis increased with tumor grade. CONCLUSIONS: We confirmed existing findings and shed light on some important genes and molecular processes that will improve our understanding of glioma biology.
- MeSH
- Astrocytoma genetics pathology MeSH
- Molecular Targeted Therapy trends MeSH
- Adult MeSH
- Glioblastoma genetics pathology MeSH
- Humans MeSH
- Brain pathology MeSH
- Brain Neoplasms genetics pathology MeSH
- Cell Proliferation MeSH
- Gene Expression Regulation, Neoplastic * MeSH
- Sequence Analysis, RNA MeSH
- Signal Transduction MeSH
- Gene Expression Profiling * MeSH
- Neoplasm Grading MeSH
- Transcriptome genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next-generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early- and late-feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample-specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG-secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite-vector interaction of I. ricinus.
- MeSH
- Phylogeny MeSH
- Ixodes chemistry genetics metabolism MeSH
- DNA, Complementary chemistry genetics MeSH
- Evolution, Molecular MeSH
- Molecular Sequence Data MeSH
- Arthropod Proteins chemistry genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Salivary Glands metabolism MeSH
- Protein Structure, Tertiary MeSH
- Transcriptome * MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
5-aminolevulinic acid (5-ALA) is the first precursor of the heme biosynthesis pathway, accumulated in acute intermittent porphyria (AIP), an inherited metabolic disease characterized by porphobilinogen deaminase deficiency. An increased incidence of hepatocellular carcinoma (HCC) has been reported as a long-term manifestation in symptomatic AIP patients. 5-ALA is an α-aminoketone prone to oxidation, yielding reactive oxygen species and 4,5-dioxovaleric acid. A high concentration of 5-ALA presents deleterious pro-oxidant potential. It can induce apoptosis, DNA damage, mitochondrial dysfunction, and altered expression of carcinogenesis-related proteins. Several hypotheses of the increased risk of HCC rely on the harmful effect of elevated 5-ALA in the liver of AIP patients, which could promote a pro-carcinogenic environment. We investigated the global transcriptional changes and perturbed molecular pathways in HepG2 cells following exposure to 5-ALA 25 mM for 2 h and 24 h using DNA microarray. Distinct transcriptome profiles were observed. 5-ALA '25 mM-2h' upregulated 10 genes associated with oxidative stress response and carcinogenesis. Enrichment analysis of differentially expressed genes by KEGG, Reactome, MetaCoreTM, and Gene Ontology, showed that 5-ALA '25 mM-24h' enriched pathways involved in drug detoxification, oxidative stress, DNA damage, cell death/survival, cell cycle, and mitochondria dysfunction corroborating the pro-oxidant properties of 5-ALA. Furthermore, our results disclosed other possible processes such as senescence, immune responses, endoplasmic reticulum stress, and also some putative effectors, such as sequestosome, osteopontin, and lon peptidase 1. This study provided additional knowledge about molecular mechanisms of 5-ALA toxicity which is essential to a deeper understanding of AIP and HCC pathophysiology. Furthermore, our findings can contribute to improving the efficacy of current therapies and the development of novel biomarkers and targets for diagnosis, prognosis, and therapeutic strategies for AHP/AIP and associated HCC.
- MeSH
- Porphyria, Acute Intermittent * complications genetics metabolism MeSH
- Carcinoma, Hepatocellular * genetics metabolism MeSH
- Carcinogenesis MeSH
- Aminolevulinic Acid metabolism pharmacology MeSH
- Humans MeSH
- Liver Neoplasms * genetics MeSH
- Reactive Oxygen Species metabolism MeSH
- Transcriptome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
With the rise of next-generation sequencing methods, it has become increasingly possible to obtain genomewide sequence data even for nonmodel species. Such data are often used for the development of single nucleotide polymorphism (SNP) markers, which can subsequently be screened in a larger population sample using a variety of genotyping techniques. Many of these techniques require appropriate locus-specific PCR and genotyping primers. Currently, there is no publicly available software for the automated design of suitable PCR and genotyping primers from next-generation sequence data. Here we present a pipeline called Scrimer that automates multiple steps, including adaptor removal, read mapping, selection of SNPs and multiple primer design from transcriptome data. The designed primers can be used in conjunction with several widely used genotyping methods such as SNaPshot or MALDI-TOF genotyping. Scrimer is composed of several reusable modules and an interactive bash workflow that connects these modules. Even the basic steps are presented, so the workflow can be executed in a step-by-step manner. The use of standard formats throughout the pipeline allows data from various sources to be plugged in, as well as easy inspection of intermediate results with visualization tools of the user's choice.